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ABSTRACT

This study explores the onset of food allergies in individuals using antacid medications, em-
ploying an innovative fractional mathematical model integrating fractional calculus and differential
equations. Through this methodology, we analyze the intricate dynamics of food allergy epidemics
and their interaction with antacid usage, offering essential perspectives for refining management
strategies and implementing early intervention measures. Our research stems from a 2001 case,
marking the initial occurrence of a severe anaphylactic reaction to manioc, a novel food allergy.
Prompted by the prolonged acknowledgment of incidents involving a tuber ingrained in native
Brazilians’ diets for over 500 years, we establish a mathematical framework addressing the persis-
tence of the cassava allergen in the presence of proton pump inhibitors (PPIs). These medications,
utilized to reduce gastric acidity in digestive disorders, elevate pH levels, fostering the preserva-
tion of the allergen and subsequently enhancing immune recognition. Our investigation hinges on
employing a mathematical model to scrutinize how incidents related to food allergies impact the dy-
namics of scientific publication. The model, offering a distinctive perspective on food allergy char-
acterization, relies on a novel set of differential equations incorporating fractional Caputo-Fabrizio
(CF) operators. Insights into the model’s long-term behavior are derived from a comprehensive ex-
amination of its qualitative characteristics and subsequent computational simulations. We establish
the existence and uniqueness of solutions within the proposed model, drawing on established re-
sults concerning fixed points. Utilizing the Ulam-Hyers method, we determine stability outcomes.
For in-depth numerical analysis and simulation, our study employs Newton’s polynomial in con-
junction with the three-step Adams-Bashforth numerical technique. The findings underscore the
efficacy of fractional order techniques in accurately capturing the complex dynamics of food aller-
gies and providing insightful information crucial for devising effective management plans.
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1 Introduction
An allergic reaction to manioc, also known as cassava or tapioca, was documented by Chiron et al. [1]
in 2001, establishing the first case of a novel food allergy. The first instance of cross-reactivity between
cassava and natural rubber latex was discovered almost simultaneously by Galvo et al. [2], a phe-
nomenon that was further discussed by a collaborative team from Portugal [3]. Ibero et al. [4] described
a different case. Manihot esculenta, also known as Manihot utilissima, refers to this carbohydrate-rich
tuberous source that is widely consumed in Brazil and more than 80 other nations, mostly in South
America, Asia, and Africa. Given that indigenous populations have consumed this dietary staple
for well over 500 years, prior to the country’s discovery, it begs the puzzling question as to why the
first cases of such allergies are only now manifesting in Brazil. Although a cursory explanation of an
incomplete diagnosis might be given, this claim is tenuous given the long-standing availability of spe-
cialised knowledge and the technical requirements for complete allergy diagnostics. The discovery of
immunoglobulin E (IgE) [5] has significantly advanced allergy diagnostics in recent years.

Additionally, the field of medical literature had previously engaged with clinical data prior to the
establishment of specialised methodologies, giving medical professionals the ability to recognise and
diagnose emerging allergic phenomena. It is therefore clear that the emergence of cassava allergies
represents a recent worry. The assumption that one or more factors may have contributed to the onset
of sensitisation and allergic reactions arises from the population’s prolonged exposure to this dietary
component over time. To better understand this issue, our research project included a thorough in-
vestigation ranging from clinical studies to molecular biology. In the course of this investigation, we
identified a previously unidentified allergen known as Man e 5, which shows cross-reactivity with Hev
b 5 found in natural rubber latex [6].

Going back to the original question, the recent increase in the prevalence of this allergy raises con-
cerns about causality. As explained in reference [7], the growing use of proton pump inhibitors (PPIs)
to treat gastrointestinal disorders has been taken into consideration. Since its inception in 1988, this
therapeutic category has expanded significantly around the world, with Brazil playing a significant
role in adoption. The HC-USP group’s investigations into this recently discovered allergen have re-
vealed its relationship to a particular subset of proteins known as “natively unfolded” or “intrinsically
unstructured,” as shown in reference [8]. According to empirical observations, proteins in this class
do not exhibit ordered structural conformation or are predicted to do so [9]. These proteins have an
exceptional susceptibility to pepsin’s enzymatic activity in the acidic environment of gastric juices as
a result of these innate qualities, which causes their rapid degradation within seconds (unpublished
data). The development of ”leaky gut syndrome” as a result of taking antacid medications, particu-
larly PPIs, makes it easier for food to not fully break down, which allows for early nutrient absorp-
tion [10, 11]. According to the literature, this phenomenon is linked to immunological fatigue and the
potential emergence of food allergies. In this situation, the elevated pH levels associated with PPI use
preserve the structural integrity of the cassava allergen, making it easier for the immune system to
identify.

The question arising from the empirical data mentioned above relates to the identification of a
cassava allergy in the Brazilian population in 2002, which was a time after the introduction of PPIs
in 1988. A thorough analysis is required in order to respond to this question. Between the beginning
of a new pharmaceutical product’s introduction to the market and the ensuing exponential growth in
its utilisation, there is inherently a time lag. A factor adding to the complexity of the situation is the
introduction of novel agents with comparable effects into the pharmaceutical landscape. Additionally,
it is important to take into account the diversity of drug use patterns; a portion of the population
exhibits sporadic and indiscriminate drug use, which is accompanied by a genetic susceptibility to
sensitisation. Along with the time between the onset of allergic symptoms and a formal diagnosis,
another consideration is the temporal progression required for the body to become sensitised to a
new allergen. Determining the answer to this complex question depends critically on a thorough
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understanding of these complex factors.
Lately, a profusion of mathematical models has emerged within the domain of fractional calcu-

lus, showcasing remarkable efficacy in resolving diverse real-world challenges, a feat attributed to
the incorporation of initial conditions. As a result, this topic has received a lot of attention in re-
cent discourse. This sharpened focus is evident in a variety of contexts [12–19]. Fractional calculus
(FC)’s theoretical underpinnings and real-world applications have been the subject of growing inter-
national intrigue. This increase in interest is primarily attributable to fractional calculus’ broad appli-
cability across a range of fields in biology, engineering, and the physical sciences, including physics,
chemistry, algebra, epidemiology, optics, ecological systems, and more. The fundamental tool for bet-
ter understanding the inherent complexity of natural phenomena is fractional calculus. As a result,
fractional calculus has the potential to have a big impact on the field of environmental analysis and
comprehension. The creation of novel fractional operators with distinguishing features is essential
to the simulation of genuine real-world puzzles. In the field of fractional calculus, researchers have
focused on developing and using novel fractional operators that have applications in a variety of situ-
ations [20–22]. Fractional derivatives have the potential to be used to model systems whose dynamics
are affected by memories of earlier states because of their non-local nature. The flexibility to select the
fractional order that best aligns with empirical data bestows the model with the capability to be finely
calibrated to factual observations, thereby facilitating enhanced comprehension of disease progression
mechanisms.

The following sections of this manuscript are arranged in a methodical manner as follows: The
formulation and presentation of the fractional-order model of friction are the focus of Section 2. In
Section 3 the basic characteristics inherent to the foundational model are discussed. The subsequent
Section 4 presents a thorough theoretical analysis of the fractional model, including enquiries into its
existence, singularity, and stability traits. Moving on, Section 5 describes the numerical approach taken
to arrive at the system’s numerical solution and imparts profound insights into the influence of various
parameters through the visualisation of graphs. The study comes to a close in Section 6, which offers
useful insights into the dynamical aspects of the epidemic food allergy phenomenon.

2 Formulation of the model
A mathematical framework is created by imposing specific assumptions to compare the individual
manifestation of such allergies with the prevalence of food allergies within a community [23]. De-
spite cassava being a common food source for allergies, conventional wisdom assumed there were
no antacid interventions by the pharmaceutical industry prior to their introduction. The variable P
represents the percentage of people at time t who have never previously developed an allergy to the
allergen. The introduction of antacid medication then takes place among a completely ignorant de-
mographic. The number of people using antacid treatments, denoted by U , gradually increases over
time in accordance with industry investments in advertising campaigns and the effectiveness of the
antacid formulation. However, due to a variety of factors, including regulatory requirements, de-
creased adherence among the population who are not sensitised, and production capacity restrictions
for pharmaceuticals, this growth eventually reaches saturation. The hypothesis, expressed as (∼ αP,
for U > 1), is based on the idea that the influx of new antacid users exhibits an inverse correlation
with both the population of non-sensitized individuals and the existing antacid users. These qualities
are combined in this conceptualisation. As mentioned in [24], this dynamic has been used before in the
context of cancer cell drug uptake. The parameter α, also known as the recruitment rate, encompasses
a variety of dynamics, including the impact of marketing tactics that target susceptible people (P) and
user recommendations (U ), and it ultimately determines how often people take their antacids. With a
small cohort of antacid users (∼ αP, for U > 1), a discernible transition is seen.While an increase in
user numbers causes recruitment to reach saturation (∼ αPU/K , for U ∼ 0) [25]. Lower value situ-
ations quickly reveal the influence of saturation, overshadowing the function of mass action kinetics.
The scaling factor controlling the hiring process is the parameter KP .
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Antiacid users develop immune sensitisation as a result of residual micro-proteins, including food
allergens, in the gastric milieu that are then taken up by epithelial cells. The concentration of food
allergens [26] available for interaction with antigen-presenting cells (APCs) intricately determines the
extent of this sensitisation. There is typically a threshold for allergen concentrations that defines the
range necessary for effective immune cell sensitisation. The population-level sensitisation process, pa-
rameterized by the term βU 2/

(
K2

U + U2), finds an analogue for these microbiological dynamics. In
this formulation, β denotes the rate of sensitisation for antiacid users, converting them into the sensi-
tised subgroup denoted as S, which represents the number of sensitised people at time t. Sensitisation
symptoms are more noticeable at lower antiacid usage levels

(
∼ βU 2/K2

U , for U ∝ K2
U
)
; however, as

the user population grows, the occurrence of sensitisation becomes saturated (∼ β, for U > 1). The
existence of a threshold concentration of food allergens necessary for sensitisation gives rise to this
saturation phenomenon. The scaling coefficient for the parameter Kv that controls the sensitisation
procedure emerges. Some members of the sensitised cohort are predisposed to developing an immune
reaction against food allergens as a result of genetic predispositions and environmental factors. The
term γS3/

(
K3

s + S3), where γ stands for the rate of allergic response acquisition among sensitised
individuals, describes this event, which is less common than sensitisation. As a result of this process,
these people are moved into the A category of food allergic people, which represents the total number
of food-allergic people at time t. Similar to sensitisation, the development of food allergies shows a
muted propensity in individuals with lower levels of sensitisation (∼ γ, for S × 1) Saturation is visible
with an increase in the sensitised population

(
∼ γS3/K3

S , for S ∝ K3
S
)
. The parameter Ks operates as

a scaling element governing the acquisition of food allergies.

Beyond the confines of allergy acquisition, it is hypothesised that everyone is subject to a uni-
form mortality rate µ, where the reciprocal µ−1 denotes life expectancy. The model also assumes that
people taking antacids switch back to the non-sensitized category at a rate δ that corresponds to stop-
ping the medication. Additionally, it is believed that an effective treatment, when available, helps
allergic individuals recover, reclassifying them as members of the sensitised group at a rate δ of treat-
ment application. The invariant total population represented by the symbol N = P + U + S +A is
comprised of the population divisions mentioned above. With the introduction of new parameters
kp = K/N, ku = KU/N, and ks = KS/N, proportions are defined as p = P/N, u = U/N, s = S/N,
and a = A/N in an effort to normalise the analysis. While KP deviates from this interpretation be-
cause of its linear relationship, the per-capita scaling parameters kα and ks assume significance as crit-
ical values. A critical threshold uc that separates situations where sensitisation is significantly more
pronounced for u > uc and remains minimal for u < uc is shown to exist. As a result, the scale of the
critical uc directly depends on the size of the scaling parameter KU . The scaling parameter KS govern-
ing allergy acquisition follows a similar line of thought. Researchers in [23] introduced the following
deterministic model to describe the dynamics of food allergy acquisition by drawing on the accepted
definitions of variables and model parameters:

dP
dt

= µ − µP + δU − αP U
K+U

dU
dt

= αP U
K+U

− (µ + δ)U − β
U 2

K2
U + U 2

dS
dt

= β
U 2

K2
U + U 2

− µs + εA− γ
S3

K3
S + S3

dA
dt

= γ
S3

K3
S + S3

− (µ + ε)A,

P(0) = P0 = 1 −U0,U (0) = U0,S(0) = S0,A(0) = A0.



(2.1)
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Table 1: Summary of the variables and parameters used in model (2.1)

Parameter Description Value/day Reference

µ Natural mortality rate 3.91389 × 10−5 [23]
δ Abandonment rate of antiacid usage 2.0 × 10−4 [23]
α Rate of naive persons to become antiacid users 15.0 × αth [23]
β Sensitization rate 1.0 × 10−8 [23]
KP Recruitment of antiacid users scaling Factor 1.0 × 10−1 [23]
KU Sensitization scaling factor 1.0 × 10−4 [23]
γ Food allergy acquisition rate 2.0 × 101 [23]
ε Recovery rate 1.0 × 10−8 [23]
KS Food allergy acquisition scaling factor 2.1 [23]
P Fraction of naive population 106 [23]
S Fraction of antiacid users 105 [23]
A Fraction of sensitized persons 104 [23]
U Fraction of food allergic persons 10−4 [23]

A powerful tool for describing memory and hereditary properties inherent to different materials
and processes has emerged: fractional derivatives. These effects, which are frequently ignored in mod-
els built on traditional integer-order derivatives, represent a key benefit of fractional derivatives. Their
importance extends to clarifying the dynamics connecting dissimilar points in a variety of domains, as
shown by [27–32]. Although the idea of fractional derivatives and integrals might be seen as a general-
isation of their traditional counterparts, it is still a difficult and conceptually complex topic. Fractional
derivatives lack the immediate geometrical interpretations that are present in conventional differen-
tial operators, such as function trends and convexity, which are frequently connected to fundamen-
tal geometric concepts. As a result, this mathematical tool may appear to be somewhat impersonal.
The application of fractional calculus is required for the clarification of many physical phenomena,
though, as they naturally display a fractional order characteriszation [1]. Fractional derivatives have
been given a number of different definitions. Notably, in the references [28, 29], Riemann and Liou-
ville introduced fractional order differentiation using power-law functions. Caputo and Fabrizio of-
fered an alternative strategy in [4], where they introduced a derivative with fractional order rooted in
exponential-law functions. The generalised Mittag-Leffler function is used as a non-local, non-singular
kernel with strong memory properties in [5] by Atangana and Baleanu to introduce yet another varia-
tion of fractional-order derivative. The Food Allergy model (2.1) is reevaluated in the following section
of this paper by incorporating a novel operator known as the Caputo-Fabrizio operator. The model,
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enhanced by this new operator, assumes the ensuing form:

CF
a DΨ

t P = µ − µP + δU − αP U
KP + U ,

CF
a DΨ

t U = αP U
KP + U − (µ + δ)U − β

U 2

K2
U + U 2

,

CF
a DΨ

t S = β
U 2

K2
U + U 2

− µS + εA− γ
S3

K3
S + S3

,

CF
a DΨ

t A = γ
S3

K3
S + S3

− (µ + ε)A.

P(0) = P0,U (0) = U0,S(0) = S0,A(0) = A0.

(2.2)

3 Preliminaries
Definition 3.1. The Caputo operator, which is typically used in fractional calculus, is described by the following
equation called is integral equation [33]. Let F ∈ H1(a, b) and b > a.

C
a DΨ

t F(t) =
1

Γ(n − Ψ)

∫ t

a
F(n)(ς)(t − ς)n−Ψ−1dς, n − 1 < Ψ < n ∈ N (3.1)

Γ(.) represents a gamma function.

Definition 3.2. The integral equation in form Caputo operator is given as follow:

C
a J Ψ

t [F(t)] =
1

Γ(Ψ)

∫ t

a
F(ς)(t − ς)Ψ−1dς. (3.2)

Definition 3.3. If we assume that F(t) ∈ H1(a, b) and b > a, A new fractional operator with non-singular
kernel was defined by Caputo and Fabrizio in 2015 as follows [34]

CF
a DΨ

t F(t) =
M(Ψ)

(1 − Ψ)

∫ t

a

dF(ς)

dς
exp− Ψ(t−ς)

1−Ψ (3.3)

Where M(0) = M(1) = 1 and thus is a function called normalization function. Furthermore, if F ∈ H1(a, b)

CF
a DΨ

t F(t) =
M(Ψ)

(1 − Ψ)

∫ t

a
(F(t)− F(ς)) exp− Ψ(t−ς)

1−Ψ . (3.4)

Remark 3.4. If x(t) = (1−Ψ)
Ψ ∈ (0, ∞), Ψ = 1

(1+x) ∈ [0, 1] then the equation write above have the following
form

CF
a DΨ

t F(t) =
M(x)

x

∫ t

a

dF(ς)

dς
exp

(
− (t − ς)

x

)
dς, M(0) = M(∞) = 1 (3.5)

Further over

limx→0
1
x

exp
(
− (t − ς)

x

)
= ∆(t − Ψ), (3.6)

Definition 3.5. Consider the fractional order Ψ and Ψ ranges in (0,1) , then the fractional integral is defined as

CF
a J Ψ

t F(t) =
2(1 − Ψ)

(2 − Ψ)M(Ψ)
F(t) +

2Ψ
(2 − Ψ)M(Ψ)

∫ t

a
F(ς)dς. (3.7)

Definition 3.6. Let f ∈ H1(a, b), a < b, Ψ ∈ (0, 1]. The AB derivative of the Caputo type is thus defined as

ABC
a DΨ

t F =
B(Ψ)

(1 − Ψ)

∫ t

a

dF′(ς)

dς
E(Ψ)

(
−Ψ(t − ς)Ψ

1 − Ψ

)
dς. (3.8)

Definition 3.7. The AB fractional integral is given as follows [35]

ABC
a SΨ

t F(t) =
(1 − Ψ)

B(Ψ)
F(t) +

Ψ
B(Ψ)Γ(Ψ)

∫ t

a
F(x)(t − ς)(Ψ−1)dς. (3.9)
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4 Fractional Stability
A fractional extension of the idea of stability is introduced, applicable to systems with non-integer
orders, using the idea of fractional variational derivatives. The characteristics of dynamical systems
under fractional perturbations can be described using these fractional variational derivatives. We cre-
ate a framework to evaluate the stability of motion changes that correspond to fractional changes in
system variables by using these derivatives. It is important to note that when taken into account in the
context of fractional variations, dynamical systems that exhibit instability in the traditional Lyapunov
sense may actually display stability.

4.1 Existence of solutions
In this section, we demonstrate the existence of solution for given model by means of fixed point
theory. The following is established in [34] on (2.1) using the CF fractional operator:

P(t)−P(0) = CF
a IΨ

t

{
µ − µP + δU − αP U

KP + U

}
,

U (t)−U (0) = CF
a IΨ

t

{
αP U

KP + U − (µ + δ)U − β
U 2

K2
U + U 2

}
,

S(t)− S(0) = CF
a IΨ

t

{
β

U 2

K2
U + U 2

− µS + εA− γ
S3

K3
S + S3

}
,

A(t)−A(0) = CF
a IΨ

t

{
γ

S3

K3
S + S3

− (µ + ε)A
}

.

(4.1)

P(t)−P(0) = F(Ψ)

{
µ − µP + δU − αP U

KP + U

}
− ∆(Ψ)

∫ t

0

{
µ − µP + δU − αP U

KP + U

}
ds,

U (t)−U (0) = F(Ψ)

{
αP U

KP + U − (µ + δ)U − β
U 2

K2
U + U 2

}
− ∆(Ψ)

∫ t

0

{
αP U

KP + U − (µ + δ)U − β
U 2

K2
U + U 2

}
ds,

S(t)− S(0) = F(Ψ)

{
β

U 2

K2
U + U 2

− µS + εA− γ
S3

K3
S + S3

}
− ∆(Ψ)

∫ t

0

{
β

U 2

K2
U + U 2

− µS + εA− γ
S3

K3
S + S3

}
ds,

A(t)−A(0) = F(Ψ)

{
γ

S3

K3
S + S3

− (µ + ε)A
}
− ∆(Ψ)

∫ t

0

{
γ

S3

K3
S + S3

− (µ + ε)A
}

ds.

(4.2)
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Where F(Ψ) = 2(1−Ψ)
(2−Ψ)M(Ψ)

and ∆(Ψ) = 2Ψ
(2−Ψ)M(Ψ)

, Now for simplicity, we replace as follows:

J1(t,P) =

{
µ − µP + δU − αP U

KP + U

}
,

J2(t,U1) =

{
αP U

KP + U − (µ + δ)U − β
U 2

K2
U + U 2

}
,

J3(t,S2) =

{
β

U 2

K2
U + U 2

− µS + εA− γ
S3

K3
S + S3

}
,

J4(t,A) =

{
β(γ

S3

K3
S + S3

− (µ + ε)A
}

.

(4.3)

Theorem 4.1. The contraction and Lipschitz condition are satisfied by the kernels J1, J2, J3, and J4, if the
inequality shown below is true:

0 ≤
(

µ + α
M1

KP1 + M1

)
< 1 (4.4)

Proof. We start with J1: Consider that S and S1 are two functions, then we calculate in below,

∥J1(t,P)−J1(t,P1)∥ =

∥∥∥∥(µ − µP + δU − αP U
KP + U

)
−

(
µ − µP1 + δU − αP1

U
KP1 + U

)∥∥∥∥,

=

∥∥∥∥[− µ − α
U

KP + U

]
(P −P1)

∥∥∥∥.

(4.5)

By utilizing the triangular inequality on Eq.(4.5), we get the following:

∥J1(t,P)−J1(t,P1)∥ ≤
∥∥∥∥− µ − α

U
KP + U

∥∥∥∥∥P(t)−P1(t)∥,

≤
{

µ + α
U

KP1 + U

}
× ∥(P(t)−P1(t))∥,

≤ Π1 × ∥(P(t)−P1(t))∥

(4.6)

Taking Π1 =

{
µ + α M1

KP1+M1

}
, Where ∥U (t)∥ ≤ M1, represent bounded functions, so, it follows

∥J1(t,P)−J1(t,P1) ≤ Π1 × ∥(P(t)−P1(t))∥. (4.7)

So J1 satisfies the Lipschitz condition, and if 0 ≤
{

µ + α M1
KP1+M1

}
< 1, then J1 is a contraction.

Similarly, J2, J3, and J4 satisfy the Lipschitz conditions:

∥J2(t,U )−J2(t,U1) ≤ Π2 × ∥(U (t)−U1(t))∥,
∥J3(t,S)−J3(t,S1) ≤ Π3 × ∥(S(t)− S1(t))∥,
∥J4(t,A)−J4(t,A1) ≤ Π4 × ∥(A(t)−A1(t))∥.

(4.8)
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(4.2) can be written as follows: With the help of representative kernels, we can write the Eq.(4.2) as
follows:

P(t)−P(0) = F(Ψ)J1(t,P)− ∆(Ψ)
∫ t

0
J1(s,P)ds,

U (t)−U (0) = F(Ψ)J2(t,U )− ∆(Ψ)
∫ t

0
J2(s,U )ds,

S(t)− S(0) = F(Ψ)J3(t,S)− ∆(Ψ)
∫ t

0
J3(s,S)ds,

A(t)−A(0) = F(Ψ)J4(t,A)− ∆(Ψ)
∫ t

0
J4(s,A)ds.

(4.9)

The accompanying recursive formula is introduced:

Pn(t) = F(Ψ)J1(t,Pn−1)− ∆(Ψ)
∫ t

0
J1(s,Pn−1)ds,

Un(t) = F(Ψ)J2(t,Un−1)− ∆(Ψ)
∫ t

0
J2(s,Un−1)ds,

Sn(t) = F(Ψ)J3(t,Sn−1)− ∆(Ψ)
∫ t

0
J3(s,Sn−1)ds,

An(t) = F(Ψ)J4(t,An−1)− ∆(Ψ)
∫ t

0
J4(s,An−1)ds.

(4.10)

We give the ICs
P0(t) = P(0),U0(t) = U (0),S0(t) = S(0),A0(t) = A(0), (4.11)

The difference among the successive terms, is given by:

δ1n(t) = Pn(t)−Pn−1 = F(Ψ)(J1(t,Pn−1)−J1(t,Pn−2))

∆(Ψ)
∫ t

0
(J1(t,Pn−1)−J1(t,Pn−2))ds,

δ2n(t) = Un(t)−Un−1 = F(Ψ)(J2(t,Un−1)−J2(t,Un−2))

∆(Ψ)
∫ t

0
(J2(t,Un−1)−J2(t,Un−2))ds,

δ3n(t) = Sn(t)− Sn−1 = F(Ψ)(J3(t,Sn−1)−J3(t,Sn−2))

∆(Ψ)
∫ t

0
(J3(t,Sn−1)−J3(t,Sn−2))ds,

δ4n(t) = An(t)−An−1 = F(Ψ)(J4(t,An−1)−J4(t,An−2))

∆(Ψ)
∫ t

0
(J4(t,An−1)−J4(t,An−2))ds,

(4.12)

The following should be noted: 

Pn(t) =
n

∑
j=0

δ1j(t),

Un(t) =
n

∑
j=0

δ2j(t),

Sn(t) =
n

∑
j=0

δ3j(t),

An(t) =
n

∑
j=0

δ4j(t).

(4.13)
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We have

∥δ1n(t)∥ =∥Pn(t)−Pn−1(t)∥ =

∥∥∥∥F(Ψ)(J1(t, Nn−1)−J1(t, Nn−2))

−∆(Ψ)
∫ t

0
(J1(t, Nn−1)−J1(t, Nn−2))ds

∥∥∥∥ (4.14)

By using the triangular inequality, the Eq. (4.14) gives us:

∥δ1n(t)∥ =∥Pn(t)−Pn−1(t)∥,

≤ F(Ψ)

∥∥∥∥(J1(t,Pn−1)−J1(t,Pn−2))

∥∥∥∥− ∆(Ψ)

∥∥∥∥ ∫ t

0
(J1(t,Pn−1)−J1(t,Pn−2))

∥∥∥∥ds
(4.15)

If Lipschitz condition (4.7) holds, we have

∥δ1n(t)∥ =∥Pn(t)−Pn−1(t)∥,

≤ F(Ψ)Π1

∥∥∥∥Pn−1 −Pn−2

∥∥∥∥− ∆(Ψ)Π1

∫ t

0

∥∥∥∥Pn−1 −Pn−2

∥∥∥∥ds
(4.16)

Then, We have

∥δ1n(t)∥ ≤ F(Ψ)Π1

∥∥∥∥δ1n−1(t)
∥∥∥∥− ∆(Ψ)Π1

∫ t

0

∥∥∥∥δ1n−1(t)
∥∥∥∥ds (4.17)

Similarly, we can find the rest of results

∥δ2n(t)∥ ≤ F(Ψ)Π2

∥∥∥∥δ2n−1(t)
∥∥∥∥− ∆(Ψ)Π2

∫ t

0

∥∥∥∥δ2n−1(t)
∥∥∥∥ds,

∥δ3n(t)∥ ≤ F(Ψ)Π3

∥∥∥∥δ3n−1(t)
∥∥∥∥− ∆(Ψ)Π3

∫ t

0

∥∥∥∥δ3n−1(t)
∥∥∥∥ds,

∥δ4n(t)∥ ≤ F(Ψ)Π4

∥∥∥∥δ4n−1(t)
∥∥∥∥− ∆(Ψ)Π4

∫ t

0

∥∥∥∥δ4n−1(t)
∥∥∥∥ds.

(4.18)

Theorem 4.2. The CF Food Allergy model (2.2) has unique solution if there exists t0 such that

F(Ψ)Π1 + ∆(Ψ)Π1t0 ≤ 1. (4.19)

Proof. Since every one of the functions P , U , S and A, are bounded, we have shown that the
kernels fulfill the Lipschitz condition, in this way by utilizing the recursive technique, we acquire the
following succeeding relation by Equations (4.17) and (4.18):

∥δ1n(t)∥ ≤ ∥Pn(0)∥[F(Ψ)Π1 + ∆(Ψ)Π1t0]
n,

∥δ2n(t)∥ ≤ ∥Un(0)∥[F(Ψ)Π2 + ∆(Ψ)Π2t0]
n,

∥δ3n(t)∥ ≤ ∥Sn(0)∥[F(Ψ)Π3 + ∆(Ψ)Π3t0]
n,

∥δ4n(t)∥ ≤ ∥An(0)∥[F(Ψ)Π4 + ∆(Ψ)Π4t0]
n.

(4.20)

Since we know that the system exists a solution and it’s continuous. Therefore, we exhibiting that the
above function gives a solution for the Food Allergy model (2.2). we continue as follows:

P(t)−P(0) = Pn(t)− θ1n(t),
U (t)−U (0) = Un(t)− θ2n(t),
S(t)− S(0) = Sn(t)− θ3n(t),
A(t)−A(0) = An(t)− θ4n(t).

(4.21)
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Therefore

∥θ1n(t)∥ =∥F(J1(t,P)−J1(t,Pn−1))− ∆(Ψ)
∫ t

0
(J1(t,P)−J1(t,Pn−1))ds∥,

≤F∥(J1(t,P)−J1(t,Pn−1))∥ − ∆(Ψ)
∫ t

0
∥(J1(t, N)−J1(t, Nn−1))∥ds,

≤F∥P − Pn−1∥ − ∆(Ψ)
∫ t

0
∥P − Pn−1∥t.

(4.22)

Recursively, this process gives

∥θ1n(t)∥ ≤ [F(Ψ) + ∆(Ψ)t]n+1Πn+1
1 d. (4.23)

At t0 we get
∥θ1n(t)∥ ≤ [F(Ψ) + ∆(Ψ)t0]

n+1Πn+1
1 d. (4.24)

Taking the limit as n → ∞ we get ∥θ1n(t)∥ → 0. Also, we can exhibit that ∥θ2n(t)∥ → 0, ∥θ3n(t)∥ → 0,

and ∥θ4n(t)∥ → 0, and the proof is done.

4.2 Uniqueness of solutions
To show the uniqueness of a solution, assume that the Food Allergy model has another solution P , U ,
S , and A. Then we get

P(t)−P(0) = F(J1(t,P)−J1(t,P1))− ∆(Ψ)
∫ t

0
(J1(t,P)−J1(t,P1))ds (4.25)

Taking the norm, we have

∥P(t)−P(0)∥ ≤ F∥(J1(t,P)−J1(t,P1))∥ − ∆(Ψ)
∫ t

0
∥(J1(t,P)−J1(t,P1))∥ds (4.26)

From lipschitz condition (4.27) it follows that

∥P(t)−P(0)∥ ≤ F∥P − P1∥Π1 − ∆(Ψ)
∫ t

0
∥P − P1∥Π1tds. (4.27)

So, we get
∥P(t)−P(0)∥(1 − F(Ψ)Π1 + ∆(Ψ)Π1t) ≤ 0. (4.28)

Theorem 4.3. The solution of CF Food Allergy model (2.2) is unique subject to the following condition

(1 − F(Ψ)Π1 + ∆(Ψ)Π1t) > 0. (4.29)

Proof. Consider Eq.(9.30) holds, then Eq.(9.29) indicate that

∥P(t)−P(0)∥(1 − F(Ψ)Π1 + ∆(Ψ)Π1t) ≤ 0. (4.30)

Further, we get
∥P(t)−P(0)∥ = 0 (4.31)

Therefore, we find
P(t) = P1(t) (4.32)

In the same manner, following the above process, we find out

U (t) = U1(t),
S(t) = S1(t),
A(t) = A1(t).

(4.33)

Hence, the uniqueness of the solution of the non-integer Food Allergy system (2.2) has completed.
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5 Numerical Modeling
Numerical modeling is a cornerstone of modern scientific investigation, empowering researchers to
unlock the natural world’s mysteries and address pressing global challenges. As computational tech-
niques advance, the impact of numerical modeling on our understanding of the universe and our
ability to shape a better tomorrow will only continue to expand, making it an indispens-able tool in
pursuing knowledge and progress. We could use three-step Adams-Bashforth and Newton’s polyno-
mial numerical methods in this section for the given fractional order food allergy model (2.2).

5.1 Three-step Adams-Bashforth method with CF operator
This study’s numerical approach makes use of the fractional Adams-Bashforth-Moulton (ABM) tech-
nique. In the field of numerical analysis, the ABM approach has a long and distinguished history,
with origins in Adams’ work from the late 19th century. Its development was furthered by Bashforth
and Moulton’s contributions in the early 20th century, which resulted in its widespread adoption in
a variety of disciplines like fluid dynamics, chemical kinetics, and population dynamics. The ABM
method has a number of advantages, such as its simplicity, computational effectiveness, and prowess
in handling difficult equations. It is easily implemented using common software packages and works
by extrapolating data from earlier time steps. The fractional version of the ABM method used in this
study is a relatively recent development resulting from recent advances in fractional calculus. This
particular variation of the method is particularly effective at solving problems involving fractional
derivatives, a common occurrence in many fields of science and engineering. Here we introduce a
solution for the Food Allergy model with Caputo-Fabrizio operator based on the Adams-Bashforth
scheme 

CF
a DΨ

t P = µ − µP + δU − αP U
KP + U ,

CF
a DΨ

t U = αP U
KP + U − (µ + δ)U − β

U 2

K2
U + U 2

,

CF
a DΨ

t S = β
U 2

K2
U + U 2

− µS + εA− γ
S3

K3
S + S3

,

CF
a DΨ

t A = γ
S3

K3
S + S3

− (µ + ε)A.

(5.1)

Now we can convert (5.1) into the following consideration

CF
a DΨ

t (P(t)) = J1(P ,U ,S ,A, t),
CF
a DΨ

t (U (t)) = J2(P ,U ,S ,A, t),
CF
a DΨ

t (S(t)) = J3(P ,U ,S ,A, t),
CF
a DΨ

t (A(t)) = J4(P ,U ,S ,A, t).

(5.2)

By utilizing the Caputo-Fabrizio integral, we get the following equation

P(t) = P(0) +
1 − Ψ
M(Ψ)

J1(P ,U ,S ,A, t) +
Ψ

M(Ψ)

∫ t

0
J1(P ,U ,S ,A, ς)dς,

U (t) = U (0) + 1 − Ψ
M(Ψ)

J2(P ,U ,S ,A, t) +
Ψ

M(Ψ)

∫ t

0
J2(P ,U ,S ,A, ς)dς,

S(t) = S(0) + 1 − Ψ
M(Ψ)

J3(P ,U ,S ,A, t) +
Ψ

M(Ψ)

∫ t

0
J3(P ,U ,S ,A, ς)dς,

A(t) = A(0) +
1 − Ψ
M(Ψ)

J4(P ,U ,S ,A, t) +
Ψ

M(Ψ)

∫ t

0
J4(P ,U ,S ,A, ς)dς.

(5.3)
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Where t = tm+1:

P(tm+1) = P(0) +
1 − Ψ
M(Ψ)

J1(Pm,Um,Sm,Am, tm) +
Ψ

M(Ψ)

∫ tm+1

0
J1(P ,U ,S ,A, ς)dς,

U (tm+1) = U (0) + 1 − Ψ
M(Ψ)

J2(Pm,Um,Sm,Am, tm) +
Ψ

M(Ψ)

∫ tm+1

0
J1(P ,U ,S ,A, ς)dς,

S(tm+1) = S(0) + 1 − Ψ
M(Ψ)

J3(Pm,Um,Sm,Am, tm) +
Ψ

M(Ψ)

∫ tm+1

0
J1(P ,U ,S ,A, ς)dς,

A(tm+1) = A(0) +
1 − Ψ
M(Ψ)

J4(Pm,Um,Sm,Am, tm) +
Ψ

M(Ψ)

∫ tm+1

0
J1(P ,U ,S ,A, ς)dς.

(5.4)

And at point t = tm:

P(tm) = P(0)+
1 − Ψ
M(Ψ)

J1(Pm−1,Um−1,Sm−1,Am−1, tm−1)

+
Ψ

M(Ψ)

∫ tm

0
J1(P ,U ,S ,A, ς)dς,

U (tm) = U (0)+ 1 − Ψ
M(Ψ)

J2(Pm−1,Um−1,Sm−1,Am−1, tm−1)

+
Ψ

M(Ψ)

∫ tm

0
J2(P ,U ,S ,A, ς)dς,

S(tm) = S(0)+ 1 − Ψ
M(Ψ)

J3(Pm−1,Um−1,Sm−1,Am−1, tm−1)

+
Ψ

M(Ψ)

∫ tm

0
J3(P ,U ,S ,A, ς)dς,

A(tm) = A(0)+
1 − Ψ
M(Ψ)

J4(Pm−1,Um−1,Sm−1,Am−1, tm−1)

+
Ψ

M(Ψ)

∫ tm

0
J4(P ,U ,S ,A, ς)dς.

(5.5)

Now we subtract the condition ((5.4) and (5.5), then we have the following result

P(tm+1) = P(tm) +
1 − Ψ
M(Ψ)

(J1(Pm,Um,Sm,Am, tm)

−J1(Pm−1,Um−1,Sm−1,Am−1, tm−1)) +
Ψ

M(Ψ)

∫ tm+1

tm

J1(P ,U ,S ,A, ς)dς,

U (tm+1) = U (tm) +
1 − Ψ
M(Ψ)

(J2(Pm,Um,Sm,Am, tm)

−J2(Pm−1,Um−1,Sm−1,Am−1, tm−1)) +
Ψ

M(Ψ)

∫ tm+1

tm

J2(P ,U ,S ,A, ς)dς,

S(tm+1) = S(tm) +
1 − Ψ
M(Ψ)

(J3(Pm,Um,Sm,Am, tm)

−J3(Pm−1,Um−1,Sm−1,Am−1, tm−1)) +
Ψ

M(Ψ)

∫ tm+1

tm

J3(P ,U ,S ,A, ς)dς,

A(tm+1) = A(tm) +
1 − Ψ
M(Ψ)

(J4(Pm,Um,Sm,Am, tm)

−J4(Pm−1,Um−1,Sm−1,Am−1, tm−1)) +
Ψ

M(Ψ)

∫ tm+1

tm

J4(P ,U ,S ,A, ς)dς.

(5.6)
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Where∫ tm+1

tm

J1(P ,U ,S ,A, ς)dς =
∫ tm+1

tm

[
J1(Pm,Um,Sm,Am, ςm)

h
(t − tm)

− J1(Pm−1,Um−1,Sm−1,Am−1, ςm−1)

h
(t − tm−1) +

J1(Pm−2,Um−2,Sm−2,Am−2, ςm−2)

h
(t − tm−2)

]
,∫ tm+1

tm

J2(P ,U ,S ,A, ς)dς =
∫ tm+1

tm

[
J2(Pm,Um,Sm,Am, ςm)

h
(t − tm)

− J2(Pm−1,Um−1,Sm−1,Am−1, ςm−1)

h
(t − tm−1) +

J2(Pm−2,Um−2,Sm−2,Am−2, ςm−2)

h
(t − tm−2)

]
,∫ tm+1

tm

J3(P ,U ,S ,A, ς)dς =
∫ tm+1

tm

[
J3(Pm,Um,Sm,Am, ςm)

h
(t − tm)

− J3(Pm−1,Um−1,Sm−1,Am−1, ςm−1)

h
(t − tm−1) +

J3(Pm−2,Um−2,Sm−2,Am−2, ςm−2)

h
(t − tm−2)

]
,∫ tm+1

tm

J4(P ,U ,S ,A, ς)dς =
∫ tm+1

tm

[
J4(Pm,Um,Sm,Am, ςm)

h
(t − tm)

− J4(Pm−1,Um−1,Sm−1,Am−1, ςm−1)

h
(t − tm−1) +

J4(Pm−2,Um−2,Sm−2,Am−2, ςm−2)

h
(t − tm−2)

]
.

(5.7)

∫ tm+1

tm

J1(P ,U ,S ,A, ς)dς =
23h
12

J1(Pm,Um,Sm,Am, ςm)−
16h
12

J1(Pm−1,Um−1,Sm−1,Am−1, ςm−1)

+
5h
12

J1(Pm−2,Um−2,Sm−2,Am−2, ςm−2),∫ tm+1

tm

J2(P ,U ,S ,A, ς)dς =
23h
12

J2(Pm,Um,Sm,Am, ςm)−
16h
12

J2(Pm−1,Um−1,Sm−1,Am−1, ςm−1)

+
5h
12

J2(Pm−2,Um−2,Sm−2,Am−2, ςm−2),∫ tm+1

tm

J3(P ,U ,S ,A, ς)dς =
23h
12

J3(Pm,Um,Sm,Am, ςm)−
16h
12

J3(Pm−1,Um−1,Sm−1,Am−1, ςm−1)

+
5h
12

J3(Pm−2,Um−2,Sm−2,Am−2, ςm−2),∫ tm+1

tm

J4(P ,U ,S ,A, ς)dς =
23h
12

J4(Pm,Um,Sm,Am, ςm)−
16h
12

J4(Pm−1,Um−1,Sm−1,Am−1, ςm−1)

+
5h
12

J4(Pm−2,Um−2,Sm−2,Am−2, ςm−2).
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Therefore

P(tm+1) =P(tm) +
1 − Ψ
M(Ψ)

[J1(Pm,Um,Sm,Am, tm)

−J1(Pm−1,Um−1,Sm−1,Am−1, tm−1)] +
Ψh

12M(Ψ)
[23J1(Pm,Um,Sm,Am, ςm)

−16J1(Pm−1,Um−1,Sm−1,Am−1, ςm−1) + 5J1(Pm−2,Um−2,Sm−2,Am−2, ςm−2)],

U (tm+1) =U (tm) +
1 − Ψ
M(Ψ)

[J2(Pm,Um,Sm,Am, tm)

−J2(Pm−1,Um−1,Sm−1,Am−1, tm−1)] +
Ψh

12M(Ψ)
[23J2(Pm,Um,Sm,Am, ςm)

−16J2(Pm−1,Um−1,Sm−1,Am−1, ςm−1) + 5J2(Pm−2,Um−2,Sm−2,Am−2, ςm−2)],

S(tm+1) =S(tm) +
1 − Ψ
M(Ψ)

[J3(Pm,Um,Sm,Am, tm)

−J3(Pm−1,Um−1,Sm−1,Am−1, tm−1)] +
Ψh

12M(Ψ)
[23J3(Pm,Um,Sm,Am, ςm)

−16J3(Pm−1,Um−1,Sm−1,Am−1, ςm−1) + 5J3(Pm−2,Um−2,Sm−2,Am−2, ςm−2)],

A(tm+1) =A(tm) +
1 − Ψ
M(Ψ)

[J4(Pm,Um,Sm,Am, tm)

−J4(Pm−1,Um−1,Sm−1,Am−1, tm−1)] +
Ψh

12M(Ψ)
[23J4(Pm,Um,Sm,Am, ςm)

−16J4(Pm−1,Um−1,Sm−1,Am−1, ςm−1) + 5J4(Pm−2,Um−2,Sm−2,Am−2, ςm−2)].

(5.8)

Which implies that

(5.9)

5.2 Numerical scheme via Newton’s polynomial
Here, we introduce a numerical approach to dealing with fractional-order systems that is essentially
based on Newton’s polynomial [37]. In their works [38–40], Atangana and Seda pioneered the use of
novel COVID-19 models and used Newton’s polynomial as a numerical tool for their solutions. It is
important to recognise the fundamental importance of Newton’s interpolation in numerical methods,
particularly in the context of image processing. This strategy is a time-tested, conventional approach
that has been widely used for interpolation. The provided dataset has been specifically tailored to the
interpolation functions used in the majority of conventional methodologies. In this study, we concen-
trate on Newton’s polynomial interpolation because it has many advantages over other methods. It
should be noted that this method of interpolation demonstrates superior convergence properties, ease
of implementation, mathematical robustness, and versatility across various dimensions like differenti-
ation and integration. These polynomials’ non-integer order derivatives can also be easily calculated.
Additionally, by appropriately adjusting the parameter value, the value of the Newton-type interpola-
tion function can be quickly changed within the region of interest. The structure and arrangement of
the interpolating surfaces and curves can be easily changed depending on the inherent properties and
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geometric requirements. In light of these factors, we will proceed to restate the model as follows:

CF
a DΨ

t P = µ − µP + δU − αP U
KP + U ,

CF
a DΨ

t U = αP U
KP + U − (µ + δ)U − β

U 2

K2
U + U 2

,

CF
a DΨ

t S = β
U 2

K2
U + U 2

− µS + εA− γ
S3

K3
S + S3

,

CF
a DΨ

t A = γ
S3

K3
S + S3

− (µ + ε)A.

P(0) = P0,U (0) = U0,S(0) = S0,A(0) = A0.

(5.10)

For simplicity, we write the above equation as follows;

CF
0 DΨ

t P =P∗(t,P ,U ,S ,A),
CF
0 DΨ

t U =U ∗(t,P ,U ,S ,A),
CF
0 DΨ

t S =S∗(t,P ,U ,S ,A),
CF
0 DΨ

t A =A∗(t,P ,U ,S ,A).

(5.11)

After applying fractional integral with exponential kernel and putting Newton polynomial into these
equations, we can solve our model as follows;

Pv+1 = Pv +
1 − Ψ
M(Ψ)

[
P∗(tv,Pv,U v,Sv,Av)

−P∗(tv−1,Pv−1,U v−1,Sv,Av−1)

]

+
Ψ

M(Ψ)


23
12P∗(tv,Pv,U v,Sv,Av, )∆t

− 4
3P∗(tv−1,Pv−1,U v−1,Sv,Av−1)∆t

+ 5
12P∗(tv−2,Pv−2,U v−2,Sv−2,Av−2)∆t



U v+1 = U v +
1 − Ψ
M(Ψ)

[
U ∗(tv,Pv,U v,Sv,Av, )

−U ∗(tv−1,Pv−1,U v−1,Sv,Av−1)

]

+
Ψ

M(Ψ)


23
12U ∗(tv,Pv,U v,Sv,Av, )∆t

− 4
3U ∗(tv−1,Pv−1,U v−1,Sv,Av−1)∆t

+ 5
12U ∗(tv−2,Pv−2,U v−2,Sv−2,Av−2)∆t



Sv+1 = Sv +
1 − Ψ
M(Ψ)

[
S∗(tv,Sv,U v,Sv,Av, )

−S∗(tv−1,Pv−1,U v−1,Sv,Av−1)

]

+
Ψ

M(Ψ)


23
12S∗(tv,Pv,U v,Sv,Av, )∆t

− 4
3S∗(tv−1,Pv−1,U v−1,Sv,Av−1)∆t

+ 5
12S∗(tv−2,Pv−2,U v−2,Sv−2,Av−2)∆t



Av+1 = Av +
1 − Ψ
M(Ψ)

[
A∗(tv,Sv,U v,Sv,Av, )

−A∗(tv−1,Pv−1,U v−1,Sv,Av−1)

]

+
Ψ

M(Ψ)


23
12A∗(tv,Pv,U v,Sv,Av, )∆t

− 4
3A∗(tv−1,Pv−1,U v−1,Sv,Av−1)∆t

+ 5
12A∗(tv−2,Pv−2,U v−2,Sv−2,Av−2)∆t
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5.3 Graphical Results
We simulate the Caputo-Fabrizio (CF) fractional-order model (2.2) in this section of the manuscript us-
ing the previously discussed three-step Adams-Bashforth (ABM) and Newton’s polynomial numerical
techniques. These simulations’ goals are to learn more about the model’s dynamics and investigate
the implications of changing the fractional order parameter Ψ. The simulation results are tabulated in
Table 1 and then plotted to show how various state variables behave under various Ψ values. Utilising
MATLAB 2019, the simulation process has a time range of 0 to 5 steps. We thoroughly investigate how
various fractional order values affect the dynamics of the model through the executed numerical sim-
ulations. In particular, for fractional order values ranging from 0.50 to 1, we examine the behaviour of
each class within the system (2.2). The ensuing Figures 1(a) to 1(d) in the following section depict these
dynamics. The population of naive people decreases as the fractional order Ψ decreases, as shown in
Figure 1(a), indicating a decreasing influence of naive people on the system as the order becomes more
fractional. We can see the increase in antiacid usage over time in Figure 1(b), though it eventually
reaches an equilibrium state after a certain amount of time. Figure 1(c) also shows a declining trend
over time with declining Ψ values in the population of sensitised people. Similar to Figure 1(c), Figure
1(d) shows the population of people with food allergies and how they change over time. The simula-
tion results show how responsive the system is to changing non-integer order parameters Ψ. Figure 2
also shows the long-term simulation results of the ABM method. Additionally, as shown in Figures 3
and 4, we compare these results with simulations performed using the Newton Polynomial approach,
revealing similar trends between the two numerical approaches. Figures 5 and 6 show the effects of
scaling factors KP and KS on each state variable under a fixed fractional order Ψ = 1, respectively.
This investigation is done to better understand how the system behaves. These visualisations offer
insightful information about how the system reacts to changes in the acquisition scaling factors for
food allergies and the recruitment of antiacid users. In conclusion, the simulation results obtained
using the Newton Polynomial and ABM methods provide in-depth understanding of the dynamics of
the proposed CF fractional-order model. The exploration of various fractional order parameters and
the effects of scaling factors provide insight into how the food allergy system behaves under various
circumstances. These discoveries help us better understand the underlying dynamics and facilitate the
creation of sensible management strategies.
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Figure 1: Paths for the solution of system (2.2) via three-step Adams-Bashforth numerical method for
a long time t = 5 years, when Ψ = 0.5, 0.6, 0.7, 0.8, 0.9, 01
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Figure 2: Paths for the solution of system (2.2) via three-step Adams-Bashforth numerical method for
a long time t = 8 years, when Ψ = 0.5, 0.6, 0.7, 0.8, 0.9, 01
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Figure 3: Paths for the solution of system (2.2) via Newton’s Polynomial numerical method for a long
time t = 5 years, when Ψ = 0.5, 0.6, 0.7, 0.8, 0.9, 01
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Figure 4: Paths for the solution of system (2.2) via Newton’s Polynomial numerical method for a long
time t = 8 years, when Ψ = 0.5, 0.6, 0.7, 0.8, 0.9, 01.
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Figure 5: Impact of the parameter KP which represent recruitment of antiacid users scaling factor on
each state variable at fractional order Ψ = 1.
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Figure 6: Impact of the parameter KS which represent food allergy acquisition scaling factor on each
state variable at fractional order Ψ = 1.
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6 Conclusion
In this study, a novel mathematical model that captures the dynamics of non-integer food allergy dis-
ease is introduced. With the help of fractional calculus and ordinary differential equations (ODEs), in
particular the Caputo fractional derivative operator, we aimed to fully comprehend and address the
complex issues surrounding food allergy disease. Fractional calculus can be used to more accurately
represent the complex dynamics governing the transmission and management of infectious diseases,
such as food allergies. Our research has provided important new understandings regarding the func-
tion of the Caputo-Fabrizio fractional derivative and management techniques for the spread of food
allergy disease. We investigated a fractional-order food allergy epidemic model in depth, using the
Caputo-Fabrizio fractional differential operator to understand the dynamic behaviours of the system.
We examined the model’s long-term behaviour using a combination of qualitative analysis and com-
putational simulations. Fixed point theory was used to establish the existence and uniqueness of the
solution, and the Ulam-Hyers method was used to analyse the system’s stability. We used Newton’s
polynomial and the three-step Adams-Bashforth numerical method as two different numerical tech-
niques for numerical simulations. The effectiveness of the fractional order approach in capturing the
complex dynamics of food allergy disease epidemics is highlighted by our findings. Additionally, these
insights provide insightful advice for creating the best control strategies. Notably, our study highlights
the critical value of early medical intervention in the management of food allergy disease, outlining
how such interventions can result in substantial cost savings and lifesaving benefits. Additionally,
we expanded our research to include a non-integer disease model for food allergies. In particular, we
provided two unique numerical algorithms using various derivative operators. According to our re-
search, the fractional model is more stable than the integer-order equivalent. This is demonstrated by
the non-integer model’s wider stability domain. Furthermore, we emphasise that the memory effect
introduced by the fractional derivative has an inherent impact on the dynamic behaviour of our pro-
posed model. In conclusion, our study uses fractional calculus and mathematical modelling to further
our understanding of the dynamics of food allergy disease. With an emphasis on the value of early in-
tervention and the potential advantages of the fractional order approach, the conclusions drawn from
our investigations have implications for the design of efficient control strategies. This study empha-
sises how important it is to take into account complex dynamic systems when examining the spread
and management of infectious diseases.
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