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ABSTRACT

Epidemic cholera is the term for acute diarrhea brought on by the pathogen’s abundance within
the human body. A mathematical model for the epidemic cholera is created by analyzing when
an individual becomes ill and exhibits signs following exposure to the pathogen concentration. The
model is first developed from a deterministic viewpoint and then converted into a model containing
stochastic differential equations. Besides offering a biological explanation for the stochastic system,
we prove that the corresponding deterministic model has potential equilibria. As such, we intro-
duce stability theorems. The research shows that there is a unique global solution for the proposed
stochastic model. Necessary conditions are defined by using the Lyapunov function theory, which
ensures that the model remains stable in the average for Rs

0 > 1. When Rs < 1, our evidence
suggests that the illness is probably gone from the population. To strengthen the validity of the
acquired analytical results, graphical solutions were created. This work provides a solid theoretical
framework for a thorough comprehension of a range of chronic communicable diseases. In addi-
tion, we will provide a method for developing Lyapunov functions that may be used to analyze the
stationary distributions of models with nonlinear random disruptions.
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1 Introduction
Cholera is caused by intestinal infections caused by the marine animal pathogen Vibrio cholerae.
Roughly 200 serogroups make up the bacterium Vibrio cholerae, but only O139 and O1—the two that
cause cholera infections—are capable of doing so [1, 2]. Before entering the mucous membrane that
covers the intestine and shields its epithelial cells, these bacteria show that they can survive and travel
through the acidic environment of the stomach [1, 3]. The small intestine’s endothelial cells secrete
more water and electrolytes when the bacteria produce enterotoxins in the colonized gut [1]. John
Snow showed in 1854 that eating or drinking tainted food or water might start cholera epidemics [4].
Other means of transmission do, however, exist. For example, contact with sick people may contribute
to the virus spreading throughout the susceptible individuals. If these people are at a higher risk of
getting the illness, they might infect other members of the family who cook or use shared water con-
tainers [4]. A person can spread the virus whether or not they show symptoms, and symptoms can
appear anytime from a few hours to five days after infection. On the other hand, the first two to three
days are often when symptoms start to appear [5]. Severe cramping in the legs, vomiting, and watery
diarrhea are the most common symptoms of this illness. Patients with infection must receive treatment
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quickly because they run the danger of dehydration, acidosis, and circulatory collapse if therapy is de-
layed. This illness has a 12- to 24-hour mortality risk in severe patients [4,6]. Following their recovery,
patients may be immune to the illness for three to ten years, according to research. Nevertheless,
research also suggests that this immunity can wait a few weeks or months later [4, 7]. Diarrheal infec-
tions remain the primary cause of mortality for infants and children, in part because of the difficulty in
accessing sanitary facilities and clean water in undeveloped and emerging nations [8]. Furthermore,
as mentioned by Sun et al. [9], this illness has a weak monitoring system and represents a significant
hazard to human civilization due to its high death and morbidity rates. Therefore, it is essential to
examine mathematical models that clarify cholera transmission pathways in order to understand the
disease’s progress and devise control measures.

Various mathematical frameworks have been studied in order to comprehend the cholera transmis-
sion patterns; these are reviewed in [1, 4, 6–9] and the cited literature. In [7], a Susceptible-Infectious-
Recovered (SIR) model was presented, which included two types of bacterial concentrations: less-
infectious and antibiotic-resistant. Asymptomatic and symptomatic subgroups are also separated
within the infected category. Using numerical simulations, optimal control theory, and sensitivity
analysis, the authors investigated the cost-effectiveness of several management approaches in two
communities where the illness is thought to be endemic. A class for the vibrio bacterial abundance in
the environment was included in the SIR-type model that Wang and Modnak [10] examined. Three
preventative actions are included in the model: medical care, water cleanliness, and vaccinations. The
authors gave the control parameters constant values, and they analyzed the equilibrium points’ sta-
bility. They conducted an additional analysis of a more thorough cholera model with time-dependent
controls by applying Pontryagin’s Maximum Principle. This study gave the necessary optimality re-
quirements and proved that the optimal control issue had a solution. The authors included a number
of control methods in their study [6], such as treatment, vaccination, isolation, and public health aware-
ness campaigns. Additionally, the model included the concentration of microorganisms as a separate
compartment. They contrasted the fundamental reproduction number and the combined threshold
parameter with the threshold values connected to treatment, vaccination, and education in order to
evaluate the possible advantages for the community. The Lyapunov functional approach was em-
ployed to do a stability study of the fixed points.

It is highly advised to apply mathematical modeling techniques to investigate the dynamics of
epidemic propagation and develop control measures [11–15]. These models provide a compromise be-
tween the robustness of data links and biological scenarios by depicting the infection’s natural course.
The models produced so far provide an explanation for various aspects of cholera dynamics. While
most models take a deterministic approach, epidemiologists researching the dynamics and control of
the cholera outbreak are very interested in environmental sounds [23]. Complicating matters are un-
predictable elements like social interactions or other characteristics of the population, such as the start
and spread of epidemics. That being said, an epidemic’s present and future states can be significantly
influenced by the variety and unpredictability of its surroundings.

It is important to highlight that there is a strong correlation between the spread and persistence
of bacteria and changes in the surrounding environment. Stochastic components are intrinsic to the
dynamics of an infection, both with respect to parameters and states. Stochasticity is acknowledged
by epidemiology as a key component of epidemic modeling. Despite their inherent randomness, the
disturbances included in the model should show positive auto-correlation. Additionally, these fluc-
tuations can be analytically derived from the related problem by the use of the probability density
function [24–26]. Modeling epidemics generally uses two main approaches: deterministic modeling
and stochastic modeling. As the stochastic approach can offer a greater degree of realism than de-
terministic models, and hence this approach is preferred when modeling biological systems [27–30].
Stochastic differential equations (SDEs) can be utilized to determine a distribution of predicted out-
comes, such as the number of infected individuals over time t. Moreover, a stochastic model produces
distinct outcomes after repeated simulations, providing more insightful information than determinis-
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tic models. To describe the dynamics of cholera infection, a number of deterministic models, such as
those shown in [31, 32], have been developed.

In this work, we developed a stochastic epidemic system to clarify the dynamics of cholera trans-
mission, with a particular emphasis on the disease’s long-term dynamics in the setting of migrating
communities that are vulnerable to contamination with pathogens. There are six distinct groups that
make up the population as a whole, which includes both humans and microbes. These sections are
designated S(t), I(t), R(t), and B(t), which stands for the susceptible, infected, isolated, and recov-
ered human subjects as well as the bacterial pathogen, in that order. These groupings are related by
mathematical formulas that take into account the features of the disease and incorporate the associ-
ated noises from the surroundings. In particular, we factor in the time interval that elapses between an
infection and a person’s beginning of cholera symptoms.

The remainder of the manuscript is organized as follows. In Section 2, we put forth a model that
governs the dynamics of cholera. We give enough information in Section 3 to show that there is a single
positive global solution. The study of the infection’s persistence and eradication is covered in detail
in Sections 4 and 5, respectively. We verify the theoretical results with numerical experiments and
graphical displays in Section 6. Section 7 provides a summary of the research and recommendations
for more studies.

2 Models formulation
The moments at which a person catches the disease and the instant at which they show symptoms
following exposure to the environment will be incorporated into a mathematical model to explain the
dynamics of the epidemic cholera. Thus, we will create a model that incorporates the Susceptible-
Infectious-Recovered (SIR) type of model and takes into consideration the pathogen’s concentration
or population density while explaining the dynamics of cholera. The whole human population N(t)
is stratified at any time t ≥ 0 into three sub-groups, S(t), I(t) and recovered R(t), which indicate
the sizes of susceptible, infected, and recovered individuals, respectively. We denotes the bacterium
concentration in the water or food by the notion B(t). The population has a constant inflow that is
reflected within the term ξ. We consider a uniform death rate µ > 0 and it happens within all the
compartments. We assumed two different types of interactions: β1 shows the interaction of human
population with the environment and β2 is the interaction among human. The vibro bacteria are dying
at the constant rate δ. Beside these, we have imposed the following assumption on the model:

A1 : Each parameter of the system is a positive real number and are nonnegative.

A2 : The constant, represented by c, represents the average number of encounters in a unit of time.

A3 : Every person in the population as a whole and the pathogen in the surroundings have an equal
chance of moving into a different class. Stated differently, the distribution of exponential types
determines the moving probability between the compartments. In an exponential distribution,
the inverse of that parameter can be used to compute the expected average time spent in a class.

A4 : It is assumed that neither the population’s size nor its demographic composition will change over
time and that no new people will ever permanently join or depart the population. This suggests
that the disease is only spreading within the confines of the population and that the dynamics of
the epidemic are unaffected by outside forces.

A5 : Recovered people are immune to cholera since they do not need medical attention. It is be-
lieved that no one who has recovered from cholera passes away. Given this, one may reasonably
conclude that the natural mortality rate for both susceptible and recovered people is µ. This
illustrates the notion that the only people who can die from cholera are those who are ill and
untreated or those who are receiving care.
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Figure 1: Flow chart of the proposed model (2.1).

The following is the mathematical model that results from the aforementioned assumptions:

S∗(t) = ξ − β1B(t)S(t)
N (t)

− β2I(t)S(t)
N (t)

− µS(t),

I∗(t) =
β1B(t)S(t)

N (t)
+

β2I(t)S(t)
N (t)

− (µ + γ)I(t),

R∗(t) = γI(t)− µR(t),
B∗(t) = ηI(t)− δB(t).

(2.1)

The state transition diagram of the proposed model SIRB is demonstrated in Figure 1. We can easily
determine the following disease-free equilibrium (DFE) points for the suggested model (2.1) using a
few simple mathematical computations. As a result, the following describes the equilibrium state of
the suggested deterministic model:

E0 =
(
S0, I0,R0,B0,

)
=

(
ξ

µ
, 0, 0, 0, 0, 0

)
. (2.2)

We compute the basic reproduction number, denoted by R0, of the model. The associated next-
generation matrix to the model is given by

F =

[
β2 β1
0 0

]
and V =

[
.γ + µ 0
−η δ

]
The spectral radius of F−1, i.e., the threshold quantity is given by

R0 = ρ
(
FV−1

)
=

1
γ + µ

(
β2 + β1

η

δ

)
. (2.3)

Based on the framework of [11], the disease-free equilibrium is locally asymptotically stable when
R0 < 1 and unstable when R0 > 1. Moreover, when R0 > 1, then there an endemic equilibrium given
by

E∗ = (S∗, I∗,Q∗,R∗,B∗) , (2.4)

The functions Zi(t) for i = 1, · · · , 4 with Zi(0) = 0 in the corresponding classes will be taken into
consideration in order to analyze the stochastic fluctuations in system (2.1).

We shall include the functions Zi(t) for i = 1, · · · , 4 with starting conditions Zi(0) = 0 inside
their respective classes in order to account for stochastic fluctuations in system (2.1). These functions
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Figure 2: Flow chart of the proposed stochastic model (2.5).

are interpreted biologically by including environmental variations, which are referred to as Brownian
movements. For i = 1, · · · , 4, the intensity corresponding to each noise is denoted by λi. When these
variations are taken into account, the suggested stochastic model becomes

dS =

[
ξ − β1B(t)S(t)

N (t)
− β2I(t)S(t)

N (t)
− µS(t)

]
dt + λ1S(t)dZ1(t),

dI =

[
β1B(t)S(t)

N (t)
+

β2I(t)S(t)
N (t)

− (µ + γ)I(t)
]

dt + λ2I(t)dZ2(t),

dR =

[
γI(t)− µR(t)

]
dt + λ3R(t)dZ3(t),

dB =

[
ηI(t)− δB(t)

]
dt + λ4B(t)dZ4(t).

(2.5)

The state transition diagram of the proposed stochastic model SIRB is demonstrated in Figure 2. Our
goal in this study is to use model (2.5) and look for answers to the following questions:

Q1 : Does random noise affect how cholera epidemics behave dynamically?

Q2 : Does the disease’s ability to spread be significantly influenced by contaminated water?

Q3 : Does eating food tainted with Vibrio cholerae alter the course of the underlying illness?

Q4 : Which of the following criteria is applied to determine if the model has undergone extinction?

Q5 : Which of the following criteria is used to determine the stationary distribution?

3 Positive global solution of the model
Demonstrating the existence of a non-local solution in the permitted region is a prerequisite for explor-
ing the dynamic behaviors of the system. This can be achieved, for example, by confirming that the
associated parameters of the system (2.5) satisfy the growth and Lipschitz criteria, which are required
to ensure that the model has a non-negative solution. Prior to delving into these characteristics, let us
assert the following crucial assertion and subsequently demonstrate its proof.
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Theorem 3.1. If the initial values of the dependent variables are positive than the stochastic model has a global
solution (S , I , R,B)(t) ∈ R4

+ for system (2.5) for all 0 ≤ t almost surely (a.s).

Proof: It is easy to see that the model’s coefficients are locally Lipschitz for the non-negative initial
values of the state variables. This guarantees that the presented issue has a local unique solution in
the interval [0, τe) for any time t. The explosion time is denoted by the symbol τe. Readers are referred
to [34, 35] for further information. Demonstrating that τe = ∞ suffices to establish the fact that this
type of solution is, in fact, global. In order to demonstrate this, let us take a sufficiently big positive
real integer k0 such that every solution to the issue falls inside the interval [ 1

k0
, k0]. Moreover, let k ≥ k0

and define

τk = in f {t ∈ [0, τe) :
1
k
≥ min{S(t), I(t),R(t),B(t)}, or

k ≤ max{S(t), I(t),R(t),B(t)}.
(3.1)

In this work, an empty set is denoted as ϕ if inf ϕ = ∞. The definition states that τk increases as
k → ∞. Assuming that τ∞ is the limit of τk, τ∞ ≤ τe nearly inevitably (a,s.). Stated otherwise, we must
demonstrate that τ∞ = ∞ a.s. If this claim is untrue, then there are two constants such that T > 0 and
ϵ ∈ (0, 1) related to each other as follows

ϵ < P{T ≥ τ∞}. (3.2)

Therefore, for the value k0 ≤ k1, we get

P{τk ≤ T} ≥ ϵ, ∀ k ≥ k1.

To proceed, let’s establish a Lyapunov function of the subsequent form:

V = (S − c1log
S
c1

− c1) + (−(log I + 1) + I) + (R− logR− 1)

+ (−1 − logB + B),
(3.3)

and later on, the value of c1 (a constant) will be ascertained. Using Itô’s formula, we get at:

dV = LVdt + λ1(S − c1)dZ1(t) + λ2(I − 1)dZ2(t)
+ λ3(R− 1)dZ3(t) + λ4(B − 1)dZ4(t),

(3.4)

where V = V(S , I ,R,B). From this function, we can define the LV operator from R4
+ to R+ that has

the following form

LV =

(
1 − c1

S

)(
ξ − β1BS

N − β2IS
N − µS

)
+

c1

2
λ1

2

+

(
1 − 1

I

)(
β1BS
N +

β2IS
N − (µ + γ)I

)
+

1
2

λ2
2

+

(
1 − 1

R

)(
γI − µR

)
+

1
2

λ3
2 +

(
1 − 1

B

)(
ηI − δB

)
+

1
2

λ4
2

= ξ − β1BS
N − β2IS

N − µS − c1ξ +
c1β1B
N +

c1β2I
N + c1µ +

c1

2
λ1

2

+
β1BS
N +

β2IS
N − (µ + γ)I − β1BS

IN − β2S
N + (µ + γ) +

1
2

λ2
2

+ γI − µR− γI
R + µ + ηI − δB − ηI

B + δ +
1
2

λ3
2 +

1
2

λ4
2.

(3.5)
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Let choose c1 = δ
β1

, such that c1β1 − δ = 0. As R+ I + S ≤ 1, we have

LV ≤ ξ + c1µ + β2 + 2µ + γ + δ +
c1

2
λ1

2 +
1
2

λ2
2 +

1
2

λ3
2 +

1
2

λ4
2 = K. (3.6)

Subsequently, the proof structure is much the same as that of [35] for Theorem 2.1. The theorem’s proof
is therefore finished by eliminating the pointless stages.

4 Extinction
Considering situations where an infectious illness would vanish from the community or go extinct
is essential to understanding the dynamics of the disease. The stochastic model (2.5) solution will
approach zero with probability one by changing the sizes of the noises, as we shall show in this section.
Let’s consider the following relation:

⟨¶(t)⟩ = 1
t

∫ t

0
¶(s)ds.

Lemma 4.1. (Strong Law) [34,35] Assume that M = {M}0≤t is a real-valued and continuous along with the
property of local martingale that approaches zero as t approaches 0. Then

lim
t→∞

〈
W ,W

〉
t = ∞, ⇒ lim

t→∞

Wt〈
W ,W

〉
t

= 0, a.s.

lim
t→∞

sup

〈
W ,W

〉
t

t
< 0, ⇒ lim

t→∞

Wt

t
= 0, a.s.

(4.1)

Lemma 4.2. [34] Let (S , I ,R,B) be the solution of system (2.5) with initial value (S(0), I(0),R(0),B(0)) ∈
R6

+. Then

lim sup
t→∞

lnS(t)
t

= 0, lim sup
t→∞

ln I(t)
t

= 0, lim sup
t→∞

lnR(t)
t

= 0, lim sup
t→∞

lnB(t)
t

= 0, a.s. (4.2)

Furthermore, if µ >
λ2

1∨λ2
2∨λ2

3
2 , and δ >

λ2
4

2 and then

lim
t→∞

∫ t
0 S(s)dZ1(s)

t
= 0,

lim
t→∞

∫ t
0 I(u)dZ2(u)

t
= 0,

lim
t→∞

∫ t
0 R(s)dZ3(s)

t
= 0,

lim
t→∞

∫ t
0 B(s)dZ4(s)

t
= 0, a.s.

(4.3)

Then, the solution of system (2.5)

lim sup
t→∞

S(t) = ξ

µ
,

lim sup
t→∞

I(t) = 0,

lim sup
t→∞

R(t) = 0,

lim sup
t→∞

B(t) = 0, a.s.

(4.4)
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One may use the evidence of Lemmas 2.1 and 2.2 in [35] to support Lemma 4.2. As a result, the
lemma’s proof is simple and is left out.

It is first necessary to specify the threshold parameter in order to explain the extinction theory of
system (2.5).

Rs =
β1η

δ

(
µ + γ +

λ2
2

2

) .

Theorem 4.3. Let us examine the starting data (S , I ,R,B)(0) and correspond to this, (S , I ,Q,R,B)(0) ∈
R4

+ represents a single solution of system (2.5). Then, the subsequent relations apply to such solution if Rs < 1:

lim
t→∞

〈
S(t)

〉
=

Π
µ

, a.s.,

lim
t→∞

〈
I(t)

〉
= 0, a.s.,

lim
t→∞

〈
R(t)

〉
= 0, a.s.,

lim
t→∞

〈
B(t)

〉
= 0, a.s.,

(4.5)

This implies that the infection within the community will certainly be eradicated in the long run.

Proof: Through the integration of system (2.5), we obtained the subsequent set of formulas:

(S(t)− S(0))
t

= ξ −
β1
〈
BS

〉〈
N

〉 −
β2
〈
IS

〉〈
N

〉 − µ
〈
S
〉
+

λ1
∫ t

0 S(r)dZ1(r)
t

,

(I(t)− I(0))
t

=
β1
〈
BS

〉〈
N

〉 −
β2
〈
IS

〉〈
N

〉 − (µ + γ)
〈
I
〉
+

λ2
∫ t

0 I(r)Z2(r)
t

,

(R(t)−R(0))
t

= γ
〈
I
〉
− µ

〈
R
〉
+

λ3
∫ t

0 R(r)dZ3(r)
t

,

(B(t)−B(0))
t

= η
〈
I
〉
− δ

〈
B
〉
+

λ4
∫ t

0 B(r)dZ4(r)
t

.

(4.6)

Taking into account the system mentioned above’s second-to-last relation, we have:

〈
B
〉
=

η

δ

〈
I
〉
− 1

δ

(
B(t)−B(0)

t

)
+

λ4

δ

(∫ t
0 B(r)dZ4(r)

t

)
,

=
η

δ

〈
I
〉
+M1(t),

(4.7)

where

M1(t) = −1
δ

(
B(t)−B(0)

t

)
+

λ4

δ

(∫ t
0 B(r)dZ4(r)

t

)
. (4.8)

Using the It‘ao formula directly on the second relation in system (2.5) produces the following results:

d log I =

[
β1BS
IN +

β2S
N − (µ + γ)− λ2

2
2

]
dt + λ2dZ2(t)

≤
[

β1B
I + β2 − (µ + γ +

λ2
2

2
)

]
dt + λ2dZ2(t).

(4.9)
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If Eq. (4.9) is integrated from 0 to t and then divided by t, the resulting relation may be obtained with
great ease:

log I − logI(0)
t

≤
[

β1
〈
B
〉〈

I
〉 + β2 − (µ + γ +

λ2
2

2
)

]
+

λ2dZ2(t)
t

. (4.10)

If we substitute relation (4.7) in Eq. (4.10), we have:

logI(t)
t

≤
[

β1(
η
δ

〈
I
〉
+M1(t))〈
I
〉 + β2 − (µ + γ +

λ2
2

2
)

]
+

logI(0)
t

+
δ2dZ2(t)

t

≤
[ β1η

δ

〈
I
〉〈

I
〉 + β2 − (µ + γ +

λ2
2

2
)

]
+

β1M1(t)〈
I
〉 +

logI(0)
t

+
λ2dZ2(t)

t

=

[
β1η

δ
+ β2 − (µ + γ +

λ2
2

2
)

]
+

β1M1(t)〈
I
〉 +

logI(0)
t

+
λ2dZ2(t)

t
.

(4.11)

Further, Mi(t) =
γi
t

∫ t
0 gidWi(t) for i = 1, 2, · · · 4., g1 = S , g2 = I , g3 = R, g4 = B are the continuous

local-martingale function and its value is 0 at t = 0. By letting t → ∞ and using Lemma 4.2, we have

lim
t→∞

sup
1
t
Mi(t) = 0. (4.12)

Following similar approach, we can easily obtain the result limt→∞ supM1(t) = 0. Further, by choos-
ing Rs < 1, Eq (4.11) leads to

lim
t→∞

sup
logI(t)

t
≤

(
µ + γ +

λ2
2

2

)(
Rs − 1

)
< 0, a.s. (4.13)

Due to relationship (4.13), we get
lim
t→∞

〈
I
〉
= 0, a.s. (4.14)

Equations (4.7) employ relation (4.14) and the following facts: limt→∞ supM1(t) = 0, we obtain

lim
t→∞

〈
B
〉
= 0, a.s, (4.15)

Similarly, we can obtain:
lim
t→∞

〈
R(t)

〉
= 0, a.s. (4.16)

Lastly, we shall consider system’s initial equation (4.6). We obtain by calculating the integral from 0 to
t, dividing the result by t, and applying the relations (4.15) and (4.16)

lim
t→∞

〈
S
〉
=

ξ

µ
, a.s. (4.17)

This concludes the proof.

5 Ergodic stationary distribution
SDEs models like system (2.5) do not have an endemic fixed point like deterministic models do. As
such, it is unable to evaluate the stability of the condition, and more precisely the endemic equilibria
(EE), in which the illness continues to exist. Scholars have instead chosen to explore the idea of unique-
ness and the presence of stationary distributions as a substitute approach to study the persistence of
epidemics within the stochastic framework. This clearly shows that the epidemics are still present. For
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future reference, we shall remember a finding by Hasminskii [36]. Before moving further, let us define
the following process:

d¶(t) =
d

∑
r=1

gr(t, ¶(t))dBr(t). (5.1)

The diffusion matrix is

Π(x) = (Υij(x)), Υij(x) =
d

∑
r=1

gi
r(x)gj

r(x).

Lemma 5.1. Assume that U ∈ Rd represents an open bounded domain with a regular border of Γ. The domain
U has the following characteristics:

1. The lowest eigenvalue of the matrix A(t) is constrained away from zero in the vicinity of U and inside its
domain.

2. The average time τ needed to travel the path from x to U is not infinite if x is a member of the space Rd\U.
Furthermore, the number supx∈K Exτ is finite for any compact subset K ⊂ Rn. Furthermore, if f (·) is an
integrable function concerning the measure ·.

Then, the Markov process F (t) admits a unique ergodic stationary distribution π(·), and

P

{
lim

T→∞

1
T

∫ T

0
f (X(t))dt =

∫
Rd

f (x)π(dx)
}

= 1, for all x ∈ Rd.

Define the parameter

Rs
0 =

ξβ1ηγ(
µ +

λ2
1

2

)(
µ + γ +

λ2
2

2

)(
µ +

λ2
3

2

)(
δ +

λ2
4

2

) . (5.2)

Theorem 5.2. Let 1 < Rs
0 and µ − λ2

1∨λ2
2∨λ2

3∨λ2
4

2 > 0, then for (S , I ,R,B)(0) ∈ R4
+, (2.5) has a unique

distribution π.

Proof. First, we must confirm that Lemma 5.1’s conditions (1) and (2) are true. In order to derive
result (1), take into account the diffusion matrix:

Υ =


λ2

1S2 0 0 0
0 λ2

2I2 0 0
0 0 λ2

3R2 0
0 0 0 λ2

4B2

 .

A proof is given for result (1) of Lemma 5.1, which states that the matrix Υ is positive-definite on
any compact subset of R4

+.
In addition to the above, our main objective is to derive property (2). Let C2-operator V : R4

+ → R

as given:

V(S , I ,R,B) =
(
− lnS − c1 ln I − c2 lnR− c3 lnB + ξ

∫ t

0
I(s)ds

)
− lnS + ζ

∫ t

t
I(s)ds − lnR− lnB +

1
ρ + 1

(S + I +R+ B)ρ+1

= V1 + V2 + V3 + V4 + V5,

(5.3)
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where c1, c2 and c2 are positive constant, will define later. Note that V(S , I ,R,B) is not only defines
on each point, but also goes to +∞ as (S , I ,R,B) goes to the limit of R4

+ and ||(S , I ,R,B)|| → ∞.

Thus, we have a tiny point in the domain of R4
+, denoted as (S(0), I(0),R(0),B(0)). A C2−

operator Ṽ : R4
+ → R+ is also taken as follows:

Ṽ(S, I ,R,B) =
(
− c1 lnS − c2 ln I − c3 lnR− c4 lnB + ξ

∫ t

0
I(s)ds

)
− lnS

− lnS + ζ
∫ t

t
I(s)ds − lnR− lnB +

1
ρ + 1

(S + I +R+ B)ρ+1

− V(S , I ,R,B)(0)

:=
5

∑
i=1

Vi − V(S , I ,R,B)(0),

(5.4)

here c4 is positive constant and will define later, also (S , I ,R,B) ∈ ( 1
n , n)× ( 1

n , n)× ( 1
n , n)× ( 1

n , n) and
n > 1 is a so larger integer,

V1 = −c1 lnS − c2 ln I − c3 lnR− c4 lnB + ξ
∫ t

0
I(s)ds,

V2 = − lnS + ζ
∫ t

t
I(s)ds,

V3 = − ln I ,
V4 = − lnR,

V5 =
1

ρ + 1
(S + I +R+ B)ρ+1,

(5.5)

ρ > 1, fulfilling µ − ρ
2 (λ

2
1 ∨ λ2

2 ∨ λ2
3 ∨ λ2

4) > 0,

A = sup
(S ,I ,R,B)∈R4

+

(
− 1

4

[
µ − ρ

2
(λ2

1 ∨ λ2
2 ∨ λ2

3 ∨ λ2
4)

]
Iρ+1

2µ +N + B̂ +
λ2

1
2

+
λ2

2
2

+
λ2

3
2

)
.

(5.6)

and

B̂ = sup
(S ,I ,R,B)∈R4

+

{
A(S + I +R+ B)ρ − 1

2

[
µ − ρ

2
(λ2

1 ∨ λ2
2 ∨ λ2

3 ∨ λ2
4)

]

× (S + E + I +Q)ρ+1
}

< ∞.

(5.7)

Applying Itô’s formula to V1, we have
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LV1 = − c1ξ

S +
c1β1B
N +

c1β2I
N + c1µ +

c1λ2
1

2
− c2β1BS

IN − c2β2S
N + c2(µ + γ) +

c2λ2
2

2

− c3γI
R + c3µ +

c3λ2
1

2
− c4ηI

B +
c4λ2

1
2

+ c4δ + ξI(0)− ξI(t)

≤ −4 4

√
c1ξ

S × c2β1BS
IN × c3γI

R × c4ηI
B + c1

(
µ +

λ2
1

2

)
+ c2

(
µ + γ +

λ2
2

2

)
+ c3

(
µ +

λ2
3

2

)
+ c4

(
δ +

λ2
4

2

)
+ ξ − ξI +

c1β1B
N +

c1β2I
N

≤ −4 4
√

ξβ1ηγc1c2c3c4 + ξ + c1

(
µ +

λ2
1

2

)
+ c2

(
µ + γ +

λ2
2

2

)
+ c3

(
µ +

λ2
3

2

)
+ c4

(
δ +

λ2
4

2

)
− ξI +

c1β1B
N +

c1β2I
N

≤ −4ξ
4

√√√√√ ξβ1ηγ(
µ +

λ2
1

2

)(
µ + γ +

λ2
2

2

)(
µ +

λ2
3

2

)(
δ +

λ2
4

2

) − 1 − ξI +
c1β1B
N +

c1β2I
N

≤ −4ξ( 4
√

Rs
0 − 1)− ξI +

c1β1B
N +

c1β2I
N .

(5.8)

Let

ξ = c1

(
µ +

λ2
1

2

)
,

ξ = c2

(
µ + γ +

λ2
2

2

)
,

ξ = c3

(
µ +

λ2
3

2

)
,

ξ = c4

(
δ +

λ2
4

2

)
.

(5.9)

Similarly, we can get

LV2 = − ξ

S +
β1B
N +

β2I
N

c1λ2
1

2
+ µ − ξI(t) + ξI(0). (5.10)

LV3 = −β1BS
IN − β2S

N + (µ + γ)
c1λ2

3
2

. (5.11)

LV4 = −γI
R + µ

c1λ2
2

2
. (5.12)
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LV5 = (S + I +R+ B)ρ[ξ − µ(S + I +R+ B))I ] + ρ

2
(S + I +R+ B)ρ−1

× (λ2
1S2 ∨ λ2

2I2 ∨ λ2
3R2 ∨ λ2

4B2)

≤ (S + I +R+ B)ρ[µN − µ(S + I +R+ B)] + ρ

2
(S + I +R+ B)ρ+1(λ2

1 ∨ λ2
2 ∨ λ2

3 ∨ λ2
4)

≤ ξ(S + I +R+ B)ρ − S + I +R+ B)ρ+1
[

µ − ρ

2
(λ2

1 ∨ λ2
2 ∨ λ2

3 ∨ λ2
4)

]
≤ B̂ − 1

2

[
µ − ρ

2
(λ2

1 ∨ λ2
2 ∨ λ2

3 ∨ λ2
4)

]
(S + I +R+ B)ρ+1

≤ B̂ − 1
2

[
µ − ρ

2
(λ2

1 ∨ λ2
2 ∨ λ2

3 ∨ λ2
4)

]
(Sρ+1 + Iρ+1 +Rρ+1 + Bρ+1).

(5.13)

B̂ is given in Eq. (5.7). From Eq. (5.8)–Eq. (5.13), we follows

LṼ ≤ −4ξ( 4
√

Rs
0 − 1)− ξI +

c1β1B
N +

c1β2I
N − ξ

S +
β1B
N +

β2I
N

c1λ2
1

2
+ µ − ξI(t) + ξI(0)

− β1BS
IN − β2S

N + (µ + γ)
c1λ2

3
2

− γI
R + µ

c1λ2
2

2

+ B̂ − 1
2

[
µ − ρ

2
(λ2

1 ∨ λ2
2 ∨ λ2

3 ∨ λ2
4)

]
(Sρ+1 + Iρ+1 +Rρ+1 + Bρ+1).

(5.14)

For ζ > 0, define a bounded closed set

D =

{
(S , I ,R,B) ∈ R4

+ : ζ ≤ S ≤ 1
ζ

, ζ ≤ I ≤ 1
ζ

, ζ2 ≤ R ≤ 1
ζ2 , ζ3 ≤ B ≤ 1

ζ3

}
.

Within the subregion R4
+\D, the following conditions hold:

− ξ

ζ
+ G ≤ −1, (5.15)

−ξ + G ≤ −1, (5.16)

−ξ + ζ(1 + c3) +A ≤ −1, (5.17)

−γ

ζ
+ G ≤ −1, (5.18)

−1
ζ
+ G ≤ −1, (5.19)

−1
4

[
µ − ρ

2
(λ2

1 ∨ λ2
2 ∨ λ2

3 ∨ λ2
4)

]
1

ζρ+1 + G ≤ −1, (5.20)

−1
4

[
µ − ρ

2
(λ2

1 ∨ λ2
2 ∨ λ2

3 ∨ λ2
4)

]
1

ζ2(ρ+1)
+ G ≤ −1, (5.21)

−1
4

[
µ − ρ

2
(λ2

1 ∨ λ2
2 ∨ λ2

3 ∨ λ2
4)

]
1

ζ3(ρ+1)
+ G ≤ −1. (5.22)

Where

G = sup
(S ,I ,R,B)∈R4

+

{
c1ζ I − 1

4

[
µ − ρ

2
(λ2

1 ∨ λ2
2 ∨ λ2

3 ∨ λ2
4)

]
Iρ+1

]
+ 3µ + γ + B̂ +

λ2
2

2
+

λ2
1

2
+

λ2
4

2

}
. (5.23)
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We need to show that LṼ ≤ −1 for any (S , E , I ,R) ∈ R4
+\D, and R4

+\D = [
⋃8

i=1 Di], where

D1 =

{
(S , I ,R,B) ∈ R4

+; 0 < S < ζ

}
,

D2 =

{
(S , I ,R,B) ∈ R4

+; 0 < I < ζ

}
,

D3 =

{
(S , I ,R,B) ∈ R4

+; 0 < R < ζ2, E ≥ ξ

}
,

D4 =

{
(S , I ,R,B) ∈ R4

+; 0 < B < ζ3, I ≥ ξ2
}

,

D5 =

{
(S , I ,R,B) ∈ R4

+;S >
1
ζ

}
,

D6 =

{
(S , I ,R,B) ∈ R4

+; I >
1
ζ

}
,

D7 =

{
(S , I ,R,B) ∈ R4

+;R >
1
ζ2

}
,

D8 =

{
(S , I ,R,B) ∈ R4

+;B >
1
ζ3

}
.

(5.24)

Case 1. If (S , I ,R,B) ∈ D1, then by Eq. (5.14), we get

LṼ ≤ −4ξ( 4
√

Rs
0 − 1)− ξI +

c1β1B
N +

c1β2I
N − ξ

S +
β1B
N +

β2I
N

c1λ2
1

2
+ µ − ξI(t) + ξI(0)

− β1BS
IN − β2S

N + (µ + γ)
c1λ2

3
2

− γI
R + µ

c1λ2
2

2

+ B̂ − 1
2

[
µ − ρ

2
(λ2

1 ∨ λ2
2 ∨ λ2

3 ∨ λ2
4)

]
(Sρ+1 + Iρ+1 +Rρ+1 + Bρ+1)

≤ −4ξ( 4
√

Rs
0 − 1)− ξI +

c1β1B
N +

c1β2I
N +

β1B
N +

β2I
N

c1λ2
1

2
+ µ − ξI(t) + ξI(0)

+ (µ + γ)
c1λ2

3
2

+ µ
c1λ2

2
2

+ B̂ − 1
2

[
µ − ρ

2
(λ2

1 ∨ λ2
2 ∨ λ2

3 ∨ λ2
4)

]
(Sρ+1 + Iρ+1 +Rρ+1 + Bρ+1)− ξ

ζ
.

(5.25)

We can choose a sufficiently small ζ > 0, by inequality (5.15), we obtain LṼ ≤ −1 for all (S , I ,R,B) ∈
D1.
Making use of inequalities (5.16), (5.17) and (5.18), and being similar to the proof of Case 1, we make
the conclusion that Ṽ ≤ −1 for all (S , I ,R,B) ∈ D2, (S , I ,R,B) ∈ D3 and (S , I ,R,B) ∈ D4. Case 2.
If (S , I ,R,B) ∈ D5, then by Eq.(5.14), we get
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LṼ ≤ −4ξ( 4
√

Rs
0 − 1)− ξI +

c1β1B
N +

c1β2I
N − ξ

S +
β1B
N +

β2I
N

c1λ2
1

2
+ µ − ξI(t) + ξI(0)

− β1BS
IN − β2S

N + (µ + γ)
c1λ2

3
2

− γI
R + µ

c1λ2
2

2

+ B̂ − 1
2

[
µ − ρ

2
(λ2

1 ∨ λ2
2 ∨ λ2

3 ∨ λ2
4)

]
(Sρ+1 + Iρ+1 +Rρ+1 + Bρ+1)

≤ −4ξ( 4
√

Rs
0 − 1)− ξI +

c1β1B
N +

c1β2I
N +

β1B
N +

β2I
N

c1λ2
1

2
+ µ − ξI(t) + ξI(0)

+ (µ + γ)
c1λ2

3
2

+ µ
c1λ2

2
2

+ B̂ − 1
2

[
µ − ρ

2
(λ2

1 ∨ λ2
2 ∨ λ2

3 ∨ λ2
4)

]
(Sρ+1 + Iρ+1 +Rρ+1 + Bρ+1)− β2ζ

ζ2 .

(5.26)

We can choose a sufficiently small ζ2 > 0, according to inequality (5.19), we achieve that LṼ ≤ −1 for
all (S , I ,R,B) ∈ D5.
Moreover, as the proof of Case 2 is comparable to it, and when combined with (5.20), (5.21), and (5.22),
the result LṼ ≤ −1 may be achieved for all (S , I ,R,B) ∈ D6, (S , I ,R,B) ∈ D7 and (S , I ,R,B) ∈ D8.
Based on the conversation above, it is evident that

LṼ < −W < 0 for all (S , I ,R,B) ∈ R4
+\D.

which illustrates the condition (2) of Lemma 5.1 is satisfied, and model (2.5) has a unique stationary

distribution and the ergodicity holds. The proof is completed.

6 Numerical scheme and simulations
It is essential to determine appropriate parameter values in order to empirically validate the theoretical
results related to system (2.5). For this purpose, two sets of parameter values are taken into consider-
ation in addition to the initial population numbers of bacteria and humans. For all instances, [0, 100]
is the required time interval. We possess the subsequent strategy to acquire the numerical solution of
the suggested stochastic model by utilizing the higher-ordered Milstein approach:

Si+1 = Si +

[
β1BiSi

Ni
− β2IiSi

Ni
− µSi

]
△ t + λ1Si

√
△tς1,i +

λ2
1

2
Si(ς

2
1,i − 1)△ t,

Ii+1 = Ii +

[
β1BiSi

Ni
+

β2IiSi

Ni
− (µ + γ)Ii

]
△ t + λ2Ii

√
△tς2,i +

λ2
2

2
Ii(ς

2
2,i − 1)△ t,

Ri+1 = Ri +

[
γIi − µRi

]
△ t + λ3Ri

√
△tς3,i +

λ2
3

2
Ri(ς

2
3,i − 1)△ t,

Bi+1 = Bi +

[
[ηIi − δBi

]
△ t + λ4B1,i

√
△tς4,i +

λ2
4

2
B1,i(ς

2
4,i − 1)△ t,

(6.1)

here ςi,j(i = 1, · · · , 4) represents the fundamental Gaussian stochastic variables, which have a distri-
bution of N (0, 1). The term ∆t represents the constant time-step. For i = 1, 2, 3, 4, the white noise
intensities are represented by the concepts λi > 0. 1 contains the parameters, noise intensities, and
beginning conditions that were used in the simulations. The deterministic system (2.1) and the per-
turbed system (2.5) are simulated and shown in Figure 3, taking into account the associated stochastic
reproduction numbers, which are Rs < 1. As the concentrations of Vibrio cholerae go closer to zero,
these graphs show what looks like the path of an exponential function with a probability of one. The-
orem 4.3 is therefore numerically confirmed. Furthermore, the findings imply that the deterministic
and stochastic systems agree closely. Furthermore, the systems’ paths get closer to the DFE with time.
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Parameter Value Parameter Value

ξ 0.50 µ 0.03
β1 0.04 β2 0.05
γ 0.02 η 0.02
δ 0.01 λ1 0.15
λ2 0.20 λ3 0.40
λ4 0.35 S(0) 0.50
I(0) 0.30 R(0) 0.05
B(0) 0.20

Table 1: Values of the parametric used in simulating models (2.1) and (2.5). All of the parameter values
were estimated.
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Figure 3: In scenarios where the corresponding stochastic reproduction numbers are smaller than one,
simulations for the deterministic model (2.1) and the stochastic model (2.5) were runs.

Theorem 5.2 illustrates the disease’s biological persistence in the context of system (2.5). We used

67



Journal of Mathematical Techniques in Modeling; Vol.1, Issue.1, 2024

the noise intensities and parameter values from 2 to numerically validate the theorem’s conclusion.
It has been noted that the illness is still spreading among people, particularly in environments with
low white noise levels. The trajectories of states B1 and B2 are non-zero in Figure 4, supporting this
discovery by showing that there is some bacterial concentration present. This result is consistent with
the claim in Theorem 5.2. Further investigations of the perturbed model solution’s behavior reveals
that the curves fluctuate around the EE point of the related deterministic model (2.1). Graphically
depicted in Figure 4 under the condition Rs

0 > 1, the solutions of both systems consistently reveal non-
zero bacterial concentrations, represented by B1 and B2, at every time t. This observation reinforces
the implications of Theorem 5.2 for the deterministic model (2.1). Specifically, when Rs

0 of model (2.5)
exceeds unity, the corresponding solution exhibits oscillations around the endemic equilibrium. To
effectively control the spread of diverse bacterial strains and the associated densities in the population
under such conditions, it is crucial to design robust policies implementing strong preventive measures
against various bacterial variations. According to Theorem 5.2, system (2.5) appears to possess an
ergodic stationary distribution. Figure 5 confirm this.

Parameter Value Parameter Value

ξ 1.30 µ 0.30
β1 0.70 β2 0.40
γ 0.40 η 0.20
δ 0.10 λ1 0.35
λ2 0.25 λ3 0.40
λ4 0.35 S(0) 0.50
I(0) 0.30 R(0) 0.05
B(0) 0.20

Table 2: Values of the parametric used in simulating models (2.1) and (2.5) under the condition of
Rs

0 > 1. All of the parameter values were estimated.
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Figure 4: Profiles of the solutions for the different compartments of the deterministic model (2.1) and
the stochastic model (2.5).

69



Journal of Mathematical Techniques in Modeling; Vol.1, Issue.1, 2024

15 20 25 30 35 40 45 50

Density of S

0

0.5

1

1.5

2

2.5

F
re

q
u
e
n
c
y

104

(a) S(t)−Population

0 5 10 15 20 25 30 35

Density of I

0

2000

4000

6000

8000

10000

12000

14000

16000

F
re

q
u
e
n
c
y

(b) I(t)−Population

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Density of R

0

5000

10000

15000

F
re

q
u
e
n
c
y

(c) R(t)−Population

0 10 20 30 40 50 60 70 80 90

Density of B

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

F
re

q
u
e
n
c
y

104

(d) B(t)−Population

Figure 5: Ergodic stationary distribution of model (2.5).

6.1 Impact of noise on the shape of the probability density function
In the previous two parts of this section, we investigated the dynamical bifurcation system of the
proposed system through numerical simulations, which is principally caused a switch in the sign of
the threshold Rs

0. Now, we will scout the long-rung phenomenological bifurcation (LRP-bifurcation),
which mainly depends on the abrupt variation in the shape of the stationary probability density func-
tion of our model (See Figure 6).
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Figure 6: (First part) The right panel of the figure displays the joint two-dimensional densities of in-
dividuals S , and I , from system (2.5) at t = 2000, the number of simulation experiments conducted
for drawing the frequency histograms is N = 50.000, and corresponding to the data taken from Figure
4. Different colors represent varying density sizes. The left panel illustrates a 3D graph depicting the
collective two-dimensional densities of S , and I .

7 Concluding remarks and future directions
To sum up, the beginning of sickness and visible symptoms following exposure to pathogen concen-
trations have been used to mimic epidemic cholera, which is characterized by acute diarrhea brought
on by the pathogen’s development. A system of stochastic differential equations is eventually derived
from the model’s original deterministic foundation. We also build possible equilibria of the related
deterministic model and offer stability theorems, in addition to providing a biological justification for
the stochastic model. Our findings demonstrate that there is a single global solution for the suggested
stochastic model. We provide adequate conditions guaranteeing the mean stability of the system for
Rs

0 > 1, using Lyapunov function theory. On the other hand, our results indicate that the disease
has most likely been eradicated from the population when Rs < 1. We provide graphical solutions
in order to further bolster the validity of our analytical findings. A strong theoretical basis for an all-
encompassing comprehension of the different chronic communicable illnesses is established by this
study. We also introduce a construction technique for Lyapunov functions that may be used for the
investigation of stationary distributions in models with nonlinear random disturbances.

Finding understanding how the illness spreads through food and water is particularly beneficial
since it may lower the danger of cross-contamination, in contrast to the way that cholera is transmitted
from person to person. The three factors of foodborne, waterborne, and human-to-human transmission
must all be addressed in order to significantly reduce the danger, according to experts. The authors
want to incorporate age and geographic effects, among other disease-related variables, into the model
in future studies. Additionally, it is intended to include other reaction functionalities in future research.
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(2021): 080201.

[29] De la Sen, Manuel, Santiago Alonso-Quesada, and Asier Ibeas. ”On the stability of an SEIR epi-
demic model with distributed time-delay and a general class of feedback vaccination rules.” Ap-
plied Mathematics and Computation 270 (2015): 953-976.

[30] Xie, Yan, and Zhijun Liu. ”The Unique ergodic stationary distribution of two stochastic SEIVS
epidemic models with higher order perturbation.” Math. Biosci. Eng 20 (2023): 1317-1343.

[31] Tian, Jianjun Paul, and Jin Wang. ”Global stability for cholera epidemic models.” Mathematical
biosciences 232, no. 1 (2011): 31-41.

[32] Lemos-Paião, Ana P., Cristiana J. Silva, and Delfim FM Torres. ”An epidemic model for cholera
with optimal control treatment.” Journal of Computational and Applied Mathematics 318 (2017):
168-180.

[33] Jin, Xihua, and Jianwen Jia. ”Qualitative study of a stochastic SIRS epidemic model with informa-
tion intervention.” Physica A: Statistical Mechanics and its Applications 547 (2020): 123866.

[34] Rajasekar, S. P., and M. Pitchaimani. ”Qualitative analysis of stochastically perturbed SIRS epi-
demic model with two viruses.” Chaos, Solitons & Fractals 118 (2019): 207-221.

[35] Bao, Kangbo, and Qimin Zhang. ”Stationary distribution and extinction of a stochastic SIRS epi-
demic model with information intervention.” Advances in Difference Equations 2017, no. 1 (2017):
1-19.

[36] Khasminskii, Rafail. Stochastic stability of differential equations. Vol. 66. Springer Science & Busi-
ness Media, 2011.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not neces-
sarily represent those of their affiliated organizations or the publisher, the editors and the reviewers.
Any product that may be evaluated in this article, or claim made by its manufacturer, is not guaranteed
or endorsed by the publisher.

74


	Introduction
	Models formulation
	Positive global solution of the model
	Extinction
	Ergodic stationary distribution
	Numerical scheme and simulations
	Impact of noise on the shape of the probability density function

	Concluding remarks and future directions

