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ABSTRACT

Due to their severe operating limitations, wireless sensor networks (WSNs) confront a ma-
jor ”Network Security” problem. The root of the problem is worm penetration into the wireless
network. Worms may spread quickly and uncontrollably throughout the network from a single
compromised node, infecting other nodes with the virus. In the present manuscript, a stochastic
Susceptible-Infectious-vaccinated-Susceptible (SIVR) model for Wireless sensor networks is pro-
posed. Firstly, we prove that the global positive solution exists and is unique. We then infer ad-
equate circumstances for the malware to endure and to go extinct. Our results demonstrate that
the introduction of sporadic environmental disturbances can prevent the malware from spread-
ing. Stated differently, the deterministic model overestimates the ability of the malware to spread
because it ignores unpredictable disturbances. To demonstrate the analytical results, numerical sim-
ulations are carried out. Comparing the proposed (SIVR) model to other models, it offers a better
method of controlling the spread of worms
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1 Introduction
The advancement of information technology has led to a noticeable rise in hostile activities that target
wireless networks. These actions put people at risk in addition to posing a security risk to countries.
People in the present day would benefit greatly from a wireless communication network that ensures
efficiency, security, and dependability. An intelligent, reasonably priced, and small gadget is a sen-
sor node in a wireless network. Mission-critical installations for recurring data gathering are just two
uses for wireless sensor networks (WSNs). They have vital uses in many different domains, includ-
ing tracking military targets, monitoring agricultural objects, managing disasters, exploring dangerous
environments, monitoring pollution and the environment, detecting floods, tracking vehicles, monitor-
ing traffic, detecting gas, monitoring water quality, seismic sensing, and applications in the healthcare
industry (Akyildiz, Su, Sankarasubramaniam, [1–3]). Sensor nodes are, however, reasonably priced
and clever gadgets. Moreover, based on sources [4, 5], they function within resource limits that in-
clude battery life, memory, and processing capacity restrictions. Because of their limited resources
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and decentralized architecture, it is therefore very difficult to establish wireless connections and pro-
vide security across these networks. As mentioned in reference [6], security risks are more common
in wireless networks than in traditional networks because of their greater sensitivity. Although sev-
eral security measures have been put in place to protect these networks from attacks, hackers are still
able to take advantage of enduring software bugs and vulnerabilities. In the case of WSNs, the afore-
mentioned difficulties are much more pressing. The reference [7] highlights that sensor nodes have
a restricted communication range and send the data they have acquired in a multi-hop fashion. Ref-
erence [8] indicates that these limitations make sensor nodes less able to defend themselves against
malware assaults, such as worms, viruses, and dangerous signals. Ensuring the network’s viability re-
quires effective control over the spread of worms. In light of this, research on mathematical modeling
and understanding the propagation pattern of the harmful signals are essential, as suggested by [9–12]
and references cited therein.

A vital and simple tool for analyzing and forecasting the dynamic behavior of different epidemics
is mathematical modeling [13–16]. In reality, the force at which infection occurs is directly linked and
is significantly influenced by various stochastic disturbance parameters such as precipitation, temper-
ature, and absolute humidity. Recognizing this effect enables us to add randomness to deterministic
biological models and so expose the effects of environmental variability, such as random noise in differ-
ential systems or oscillations in parameters [17–19]. In addition, stochastic models offer more realism
and freedom than their comparable deterministic counterparts. Stochastic population dynamics af-
fected by white noise (or Brownian motion) has been the subject of much research by several writers
(see [20, 21] for references).

By clearly demonstrating and investigating the proposed SIVR model, this study makes a substan-
tial contribution and gives researchers a useful tool for effectively communicating and handling the
dynamics of worms within WSNs. Through the integration of perturbations of the white noise type,
we reveal the influence of both ambient noise and parameter changes. The SIVR model is used in this
article to clearly and succinctly explain the methods for limiting virus spread across network users.
The suggestion clarifies the interaction of metamorphism which a node may have in different infec-
tious stages. It conceptualizes the SIVR model and applies the idea of stochastic epidemic theory to
study malware spread within the networks. Thorough simulation results provide unequivocal con-
firmation of the correctness of the suggested model and the analytical results carried out during the
analysis.

The subsequent sections are arranged in the following order inside the manuscript. In Section 2, we
provide the stochastic epidemic model pertaining to worm propagation within a wireless sensor net-
work. The solution of the type of global positive of the underlying model and its dynamical properties
are described in Section 3. We show that the worm epidemic experiences exponential extinction under
certain conditions in Section 4. Establishing necessary criteria for the existence of persistence is the
focus of Section 5. Part 6 contains numerical simulations that support the theory behind the obtained
conclusions, which are confirmed both qualitatively and quantitatively. In Section 7, the study comes
to a finish with some closing thoughts and suggestions for more investigation.

2 Proposed model
At any time t, a wireless sensor network with N nodes which are evenly dispersed across a certain
region is assumed to formulate the model. It is further assumed that the worms propagate within
the network like an epidemic spread within a human population. The average density of the nodes
is ρ, uniformly distributed over a region of L2. Around πr2, each node may sense a region with a
distance of r. At least one node must be located inside the covered zone in order for communication to
occur. Every node has the ability to communicate information to the sink directly or via nearby nodes.
At first, we take it for granted that every node in the network is vulnerable to virus attack, which
means that worm assaults can target them. Four state variables are taken into consideration in this
study: susceptible nodes S(t), which are vulnerable to malware attacks but have not yet contracted the
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infection; infectious nodes I(t), which have contracted the infection and are able to infect other nodes;
recovered nodes R(t), which have been outfitted with a detection tool to help them find and remove
malware infections; and vaccinated nodes V(t). Every node has a sensing range of r and a potential
spreading region of πr2. The density of susceptible nodes per unit area is denoted by the expression
ρ(t) = S(t)

L×L . The expression S′(t) = S(t)πr2

L2 represents the size of the nodes inside a node’s sensing

region. To make things easier, let β = πr2

L2 β be the parameter. Given the following differential equation
system, it may be used to explain the worm’s behavior inside the network:

dS(t)
dt

= (1 − p)µ − βS(t)I(t)
N(t)

− µS(t),

dI(t)
dt

=
βS(t)I(t)
N(t)

− (γ + γ1 + µ)I(t),

dV(t)
dt

= pµ − µV(t),

dR(t)
dt

= γ1I(t)− µR(t).

(2.1)

A detailed interpretation of the model’ parameters is presented in Table 1.

Symbol Description of symbol
p Denote the vaccination rate
β The rate of contacts that causes infection
µ Represent the natural death
γ Death Rate by the infection
γ1 Recovery rate

Table 1: Interpretation of the parameters used in the model.

We need to set dS
dt = 0, dI

dt = 0, dV
dt = 0 as well as dR

dt = 0 in order to calculate the underlying
equilibria of the model. Following the required computations, the worm-free equilibrium (WFE) value
is as follows:

¶0 =
(
S0, I0,V0,R0) = (1 − p, 0, p, 0) .

The threshold number for the associated system of ODEs, denoted as R0, is obtained as follows:

R0 =
µβ(1 − p)

N(γ + γ1 + µ)
.

where N = 1 is assumed. The endemic equilibrium (EE), also known as the state in which the worm
exists inside the network, is described as ¶∗ = (S∗,E∗, I∗,R∗) and is defined by

S∗ =
N(γ + γ1 + µ)

β
,

I∗ =
µ(β(1 − p)− (γ + γ1 + µ))

β(γ + γ1 + µ)
,

V∗ = p,

R∗ =
γ1

µ
I∗.

When addressing real-world situations, epidemics—whether caused by infectious illnesses or some-
thing else entirely—are prone to intricate and unpredictable fluctuations. Given the intrinsic unpre-
dictability of epidemic events, using stochastic models to represent them would be a better strategy.
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The introduction of the white noise model (2.1) is the main goal of the current effort. Next, the stochas-
tically perturbed format of the deterministic system (2.1) may be represented as follows:

dS(t) =
[
(1 − p)µ − βS(t)I(t)

N(t)
− µS(t)

]
dt + η1S(t)dB1(t),

dI(t) =
[

βS(t)I(t)
N(t)

− (γ + γ1 + µ)I(t)
]

dt + η2IdB2(t),

dV(t) =
[

pµ − µV(t)
]

dt + η3V(t)dB3(t),

dR(t) =
[

γ1I(t)− µR(t)
]

dt + η4R(t)dB4(t).

(2.2)

Here the fluctuating dynamics are represented by Bi(t) for i = 1, · · · , 4, and the noise intensities are
represented by η1, η2, η3, and η4. Undoubtedly, it includes the results of Bi(0) = 0 for the values of
i = 1, 2, · · · , 4.

3 Qualitative Analysis of positive solution
Finding a nonlocal solution inside the permissible space is essential for examining the dynamic be-
havior of system (2.2). This may be achieved by confirming that the system’s related parameters (2.2)
fulfill the growth and Lipschitz criteria. Fulfilling these conditions ensures that the underlying model
has a non-negative solution. Indeed, further analysis of Lyapunov function approaches is necessary
for the exploration of positive and non-local solutions [12, 19, 23–28]. These methods offer insight-
ful information on the system’s convergence and stability characteristics, facilitating a more thorough
comprehension of its behavior. To investigate the features described above, let us first express a crucial
claim and then provide its proof.

Theorem 3.1. Subject to a positive initial set of data for the state variables, a global solution (S, I,V,R)(t) ∈ R4
+

for system (2.2) exist for all 0 ≤ t a.s.

Proof. The coefficients of system (2.2) are evidently continuous and Lipschitz locally, considering
any an initial values (S0, I0,V0,R0) ∈ R4

+. Consequently, a unique local solution (S(t), I(t),V(t),R(t))
exists for t ∈ [0, τe), here τe represents the explosion time. In order to establish that infact this solution
is global, it is necessary to demonstrate that τe = ∞ almost surely. Choose a sufficiently large integer
k0 ≥ 0 such that the initial values (S(0), I(0),V(0),R(0)) lie within the interval

[
1
k0

, k0

]
. For every

integer k ≥ k0, we define the following stopping time:

τk = inf
{

t ∈ [0, τe) : min((S(t), I(t),V(t),R(t)) ≤ 1
k

or max{((S(t), I(t),V(t),R(t))} ≥ k
}

.

Using inf ∅ = ∞ as a definition, we observe that τe ≥ τ+, suggesting that τ+ = ∞ is very certainly the
case. This fact certainly shows that τe = +∞. Given that τ+ is not infinite, 0 < P(τ+ < T) must exist
for some nonnegative number T and

P {τ∞ ≤ T} > ϵ.

As a result, there exists a real number k0 ≤ k1 for which

P {T ≥ τk} > ϵ ∀ k ≥ k1. (3.1)

To proceed further, consider a function (a C2-function) V : R4
+ → R+ where

{x : x is non-negative real number} = R+,
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by

V(S, I,V,R) = (−1 + S− ln S) + (−1 + I− ln I) + (−1 + V− lnV) + (−1 + R− lnR)

+
∫ t

0
ζI(s)ds.

By employing the Itô formula, we derive

dV = LVdt + (S− 1)η1dB1(t) + (I− 1)η2dB2(t) + (V− 1)η3dB3(t) + (R− 1)η4dB4(t),

where

LV = (1 − 1
S
)((1 − p)µ − βSI

N
− µS) +

η2
1

2
+ (1 − 1

I
)(

βSI

N
− (γ + γ1 + µ)I) +

η2
2

2

+ (1 − 1
V
)(pµ − µV) +

η2
3

2
+ (1 − 1

R
)(γ1I− µR) +

η2
4

2
,

= (1 − p)µ − βSI

N
− µS− (1 − p)µ

S
+

βI

N
+ µ +

βSI

N
− (γ + γ1 + µ)I− βS

N
+ (γ + γ1 + µ)

+ pµ − µV− pµ

V
+ µ + γ1I− µR− γ1I

R
+ µ +

η2
1 + η2

2 + η2
3 + η2

4
2

,

= 5µ +
βI

N
+ γ + γ1 +

η2
1 + η2

2 + η2
3 + η2

4
2

,

≤ 5µ + β + γ + γ1 +
η2

1 + η2
2 + η2

3 + η2
4

2
.

We have,

LV ≤ 5µ + β + γ + γ1 +
η2

1 + η2
2 + η2

3 + η2
4

2
:= M. (3.2)

The remaining work for the proof can be same as in Theorem 2.1 of [24], therefore we skip it.

4 Extinction analysis of the worm-free equilibrium
The investigation of the system’s extinction (2.2) and the establishment of a threshold to ascertain if the
disease will eventually disappear or continue are the main topics of this portion of the work. It infers
the circumstances that caused the illness to go extinct. Just to be clear, let’s define

⟨X(t)⟩ = 1
t

∫ t

0
X(s) ds.

Lemma 4.1. Let (S(t), I(t),V(t),R(t)) be the solution of the system (2.2) with initial value (S(0), I(0),
V(0),R(0)) ∈ R4

+, then lim
t→∞

sup(S(t) + I(t) + V(t) + R(t)) < ∞.

Moreover,

lim
t→∞

S(t)
t

= 0, lim
t→∞

I(t)
t

= 0. lim
t→∞

V(t)
t

= 0, lim
→∞

R(t)
t

= 0, a.s.

lim
t→∞

ln S(t)
t

= 0, lim
t→∞

ln I(t)
t

= 0. lim
t→∞

lnV(t)
t

= 0, lim
→∞

lnR(t)
t

= 0, a.s.

and

lim
t→∞

∫ t
0 S(s)dB1(s)

t
= 0, lim

t→∞

∫ t
0 I(s)dB2(s)

t
= 0,

lim
t→∞

∫ t
0 V(s)dB3(s)

t
= 0, lim

t→∞

∫ t
0 R(s)dB4(s)

t
= 0, a.s.
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Proof. From the model (2.2), we can have

d(S+ I+ V+ R) = µ − µ(S+ I+ V+ R)− γI+ η1SdB1 + η2IdB2 + η3VdB3 + η4RdB4

Solving this equation, we can get

Theorem 4.2. If the threshold number Rs
0 < 1, then the disease I(t) in system (2.2) will almost surely tend to

zero following an exponential function.

Proof. Equations resulting from the integration of the model (2.2) are as follows:

S(t)− S(0)
t

= (1 − p)µ − β⟨SI⟩
⟨N⟩ − µ⟨S⟩+ η1

t

∫ t

0
S(t) dB1(t)

I(t)− I(0)
t

=
β⟨SI⟩
⟨N⟩ − (γ + γ1 + µ)⟨I⟩+ η2

t

∫ t

0
I(t) dB2(t)

V(t)− V(0)
t

= pµ − µ⟨V⟩+ η3

t

∫ t

0
V(t) dB3(t)

R(t)− R(0)
t

= γ1⟨I⟩ − µ⟨R⟩+ η4

t

∫ t

0
R(t) dB4(t)

Differentiating the 2nd equation of model (2.2) using Itô formula, one can get

dlnI(t) =
[

βSI

N
− (γ + γ1 + µ)I

]
1
I

dt − η2
2

2
dt + η2dB2,

=

[
βS

N
− (γ + γ1 + µ)

]
dt − η2

2
2

dt + η2dB2,

≤
[

β − (γ + γ1 + µ +
η2

2
2
)

]
dt + η2dB2,

≤ (γ + γ1 + µ +
η2

2
2
)

 β

(γ + γ1 + µ +
η2

2
2 )

− 1

 dt + η2dB2,

≤ (γ + γ1 + µ +
η2

2
2
)(Rs

0 − 1)dt + η2dB2,

(4.1)

where,

Rs
0 =

β

(γ + γ1 + µ +
η2

2
2 )

.

Therefore, we have

dlnI(t) ≤ (γ + γ1 + µ +
η2

2
2
)(Rs

0 − 1)dt + η2dB2. (4.2)

Taking integration of the inequality (4.2) within the range 0 and t, employing Lemma 4.1, we have

lim
t→∞

sup
ln I(t)

t
≤ (γ + γ1 + µ +

η2
2

2
)(Rs

0 − 1), a.s, (4.3)

which shows that
lim
t→∞

I(t) = 0. (4.4)

In the view of above given result, our model A equations satisfy

R(t)− R(0)
t

= γ1⟨I⟩ − µ⟨R⟩+ η4

t

∫ t

0
R(t) dB4(t) (4.5)
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Applying limits with respect to t → ∞, we can have

lim
t→∞

R(t)− R(0)
t

= γ1 lim
t→∞

⟨I⟩ − µ lim
t→∞

⟨R⟩+ η4

t
lim
t→∞

∫ t

0
R(t) dB4(t) (4.6)

according to Lemma 4.1 and above result, we can get

lim
t→∞

R(t) = 0. (4.7)

and the rest of the equations of model A are given as

lim
t→∞

V(t) = p. (4.8)

and
lim
t→∞

S(t) = 1 − p. (4.9)

This demonstrates how the system behaves asymptotically, and hence supporting the primary goal of

the theorem.

5 Persistence
In this part of the manuscript, we lay out a few necessary criteria for the worm to persist in the net-
works. We start by introducing this definition:

Definition 5.1. The proposed model (2.2) is said to be persistence in the mean, if

lim
t→∞

inf
1
t

∫ t

0
I(r)dr > 0, a.s.

Theorem 5.2. If Rs = (1−p)µβ

(µ+
η2

1
2 )(γ+γ1+µ+

η2
1
2 )

> 1, then for a positive initial data, that is, (S, I, V, R)(0) ∈ R+
4 ,

the malware infected nodes I(t) of (2.2) has the property

lim
t→∞

inf
〈

I(t)
〉
≥ 2Λ(

√
Rs − 1)

c1β
, a.s. (5.1)

where c1 = Λ

(µ+
η2

1
2 )

and c2 = Λ

(γ+γ1+µ
η2

2
2 )

. In other words, the worms will persist in the networks for Rs > 1.

Proof. Set
V1 = −c1lnS− c2lnI.

In this case, c1 and c2 values will be found later. Using the Itô formula, we arrive at

dV1 = LV1dt − c1η1dB1(t)− c2η2dB2(t), (5.2)

where

LV1 = c1L(−lnS) + c2L(lnI)

= −c1[
(1 − p)µ

S
− βI(t)

N(t)
− µ − η2

1
2
]− c2[

βS(t)
N(t)

− (γ + γ1 + µ)− η2
2

2
]

= −c1
(1 − p)µ

S
+ c1

βI(t)
N(t)

+ c1µ + c1
η2

1
2

− c2
βS(t)
N(t)

+ c2(γ + γ1 + µ) + c2
η2

2
2

≤ −2
√

c1c2(1 − p)µβ + c1(µ +
η2

1
2
) + c2(γ + γ1 + µ

η2
2

2
) +

c2βI(t)
N(t)

,

(5.3)
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let
c1 =

Λ

(µ +
η2

1
2 )

c2 =
Λ

(γ + γ1 + µ +
η2

2
2 )

LV1 ≤ −2

√√√√ Λ2(1 − p)µβ

(µ +
η2

1
2 )(γ + γ1 + µ

η2
2

2 )
+ 2Λ +

c1βI(t)
N(t)

≤ −2Λ
(√√√√ (1 − p)µβ

(µ +
η2

1
2 )(γ + γ1µ +

η2
2

2 )
− 1

)
+

c1βI(t)
N(t)

≤ −2Λ
(√

RS
0 − 1

)
+

c1βI(t)
N(t)

.

(5.4)

Put Eq. (5.4) in Eq. (5.2) and then integrate both sides of Eq. (5.2) we will get

V1(S(t), I(t)− V1(S(0), I(0))
t

≤ −2Λ(
√

Rs − 1) +
c1β

〈
I(t)

〉〈
N(t)

〉 − c1η1B1(t)
t

− c2η2B2(t)
t

.

V1(S(t), I(t)− V1(S(0), I(0))
t

≤ −2Λ(
√

Rs − 1) +
c1β

〈
I(t)

〉〈
N(t)

〉 + ψ(t). (5.5)

where ψ(t)= − c1η1B1(t)
t − c2η2B2(t)

t . From strong law of large number it follows that

lim
t→∞

ψ(t) = 0.a.s. (5.6)

From Eq. (5.5) we have

〈
I(t)

〉
≥ 2Λ(

√
Rs − 1)

c1β
− ψ(t)

c1β
+

1
c1β

(
(V1(S(t), I(t))− V1(0), I(0))

t
). (5.7)

By taking the limit it will yield to

lim
t→∞

in f
〈

I(t)
〉
≥ 2Λ(

√
Rs − 1)

c1β
, a.s.

Here we finish the proof of Theorem 5.2.

6 Simulations
To demonstrate the previously proven analytical results, we shall simulate the model for numerical
solution in this portion of the manuscript. To discretize system (2.2), we shall use the conventional
higher-order Milstein’s approach [25, 29] and the scheme is presented as follows:

Si+1 = Si +

[
(1 − p)µ − βSi Ii

N
− µSi

]
△ t + η1Si

√
△tξ1,i +

α2
1

2
Si(ξ

2
1,i − 1)△ t,

Ii+1 = Ii +

[
βSi Ii

N
− (γ + γ1 + µ)Ii

]
△ t + α2Ii

√
△tξ1,i +

α2
2

2
Ii(ξ

2
1,i − 1)△ t,

Vi+1 = Ii +

[
pµ − µVi

]
△ t + α3Vi

√
△tξ1,i +

α2
3

2
Vi(ξ

2
1,i − 1)△ t,

Ri+1 = Ri +

[
γ1 Ii − µRi

]
△ t + α4Ri

√
△tξ1,i +

α2
4

2
Ri(ξ

2
1,i − 1)△ t.

(6.1)
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In the above, ξi such that i = 1, · · · , 4 are the independent Gaussian random variables that follow
the Gaussian distribution N(0, 1) and the term ∆t indicates a positive uniform time-step. Tested sets
include [0, 5000] and ∆ = 0.5.

6.1 Numerical simulations of the extinction
It is clear from the analytical sections studied so far that the term Rs

0 acts as a threshold value. In
the case Rs

0 < 1, the infected nodes’ portion goes toward zero. This numerical validation support the
findings of Theorem 4.2, which states that the worm consistently and progressively vanishes from the
network when Rs

0 < 1. Figures 1a-1d, which come from the first experiment, can be used to infer this
finding. Table 2 shows the associated parameters and starting values of the system (2.2). In the long
term, the nodes infected by the worms are approaching zero whenever Rs

0 < 1. Rational worms in the
network will ultimately approach zero, as theorem 4.2 suggests. Using either deterministic or stochas-
tic versions of the model, Figures 1a-1d guarantee the removal of worms from the networks, exhibiting
the same result. Table 2 shows the parameter settings and the initial data used to simulate system (2.2).
The reproduction number R0 is the threshold value for the epidemic-free equilibrium in (2.1), as seen
in Fig. 1. The trajectories of model (2.2), which displays variations, converges towards the worm-free
equilibrium point of the deterministic counterpart, signifying the epidemic’s disappearance. MATLAB
(R2017a) was used to simulate the model in order to investigate the effects of different settings.

Parameter Value Source

p 0.04 Estimated
µ 0.01 Estimated
β 0.07 Estimated
γ 0.02 Estimated
γ1 0.03 Estimated
S(0) 0.70 Estimated
I(0) 0.80 Estimated
V(0) 0.30 Estimated
R(0) 0.20 Estimated
η1 0.10 Estimated
η2 0.30 Estimated
η3 0.45 Estimated
η4 0.40 Estimated

Table 2: Values of the parameter used in simulating models (2.1), and (2.2).

6.2 Numerical simulations for persistence
In this part of the paper, we intend to validate the persistence of the worms within the network under
certain conditions as suggested by Theorem 5.2. We calculated Rs > 1 by using data from 3, which
indicates that the size of the infected nodes is non-negative and eventually converges to the corre-
sponding equilibrium. This implies that, in line with Theorem 5.2, the malware will continue to exist
in the networks. Taking into account both temporal and geographical modifications of the parameters,
these simulations explore the dynamics of malware inside the network. Furthermore, Theorem 5.2
attests to the suggested model’s durability. As thus, the malware will continue to exist in the network
without decreasing, creating a steady state of endemic equilibrium. Moreover, it has been shown that
improved network connection is a direct result of increased sensor node connectivity.
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Figure 1: The corresponding simulations of the system (2.2) and the deterministic system (2.1).

Parameter Value Source

p 1.40 Estimated
µ 0.20 Estimated
β 0.50 Estimated
γ 0.20 Estimated
γ1 0.40 Estimated
S(0) 0.70 Estimated
I(0) 0.80 Estimated
V(0) 0.30 Estimated
R(0) 0.20 Estimated
η1 0.50 Estimated
η2 0.70 Estimated
η3 0.45 Estimated
η4 0.25 Estimated

Table 3: Values of the parameters for simulating model (2.1), and (2.2) ensuring the condition Rs > 1.
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Figure 2: The corresponding simulations of the system (2.2) and the deterministic system (2.1).

7 Conclusion
We introduced a stochastic SIVR model in this study to tackle the problem of lowering the worm spread
in wireless sensor networks. The model incorporates random components that come from fluctuations
in the environment, represented as Gaussian white noise. We defined an adequate set of conditions
to determine if worm spread in WSNs would endure or cease to exist in terms of mean behavior.
These settings offer insightful information on the system’s long-term dynamics, which advances our
knowledge of the dynamics of worm propagation and control techniques in WSNs. First, using the
Lyapunov function method, we showed that our model permits a global, positive, and feasible solu-
tion. We then calculated our stochastic system’s basic reproductive threshold, which coincided with
the basic threshold value R0 of the deterministic system, excluding noise oscillation. We concluded
that the worms will eventually die out if Rs

0 is less than or equal to 1. On the other hand, the average
nodes will continue to be infected if Rs

0 > 1. Lastly, using simulations, we contrasted our analytical
findings with approximate solutions.

The thorough findings of this investigation provide compelling evidence that the suggested paradigm
improves data efficiency and prolongs the lifetime of wireless sensor networks. These results have
practical implications for software companies, providing knowledge that can be applied to create an-
tivirus programs that are more successful in preventing malware assaults in wireless sensor networks.
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To further strengthen the entire security architecture and lessen future threats, the investigation will
help end users recover affected nodes and install antivirus software on sensor nodes with caution.

Further study paths may also include the inclusion of mobile and diverse nodes and the investi-
gation of other variables like quarantined and vaccinated classes. These factors might improve the
model’s applicability and provide more information on the dynamics of worm spread and mitigation
techniques in WSNs.
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