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ABSTRACT 

Due to its inherent flexibility and accuracy in solving equations, the Variational Iteration Method (VIM) has 

proven to be a potent technique for addressing both linear and nonlinear models. In this work, a different 

method for solving VIM is presented, and its convergence to differential equations is examined. The main 

goals are to give error estimates and sufficient conditions for convergence. VIM is applied to ordinary 

differential equations in simplified forms, and convergence results and efficiency are discussed. The 

convergence features of VIM are investigated through in-depth study, revealing underlying mechanisms and 

illuminating its iterative nature. This study advances our knowledge of the theoretical underpinnings and 

practical applications of VIM in ordinary differential equations, improving its dependability and suitability 

for use in real-world problem-solving situations. Our findings enhance understanding of VIM's iterative 

nature, advance theoretical knowledge, and suggest avenues for future applications and improvements.These 

observations about the convergence of VIM confirmed the reliability of VIM for solving real-world problems, 

advancing its applicability in computational science and engineering. 
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1 Introduction  

The Variational iteration method is a strong new technique that can handle both linear and nonlinear 

equations. This approach is straightforward and less complicated to calculate because it relies on the 

Lagrange multiplier and constrained variation. Differential equations are important for research, but they can 

be quite challenging to solve for higher-order equations. These complexities have led to a major growth in 

the usage of numerical and iterative techniques. These methods have been shown to be quite effective in 

managing the intricacy of these equations and providing practical solutions for real-world problems. As 

academics attempt to analyze and comprehend complex systems, the growing use of these computational 

tools highlight the significance of these approaches in contemporary scientific and technical endeavors. The 

VIM differs from other effective techniques, such the Homotopy Perturbation Method (HPM) [1], Laplace 

Method [2], and Adomian Decomposition Method (ADM) [3], VIM provides a series of approximations that, 

if the solution exists, converge to the precise solution with a high degree. 

The Chinese mathematician Ji-Huan He used the VIM [4] to solve various nonlinear analytical 

problems. His seminal work in 1999 highlighted the potential of VIM as a non-linear analytical technique, 

showcasing its applicability through examples in his work. Subsequently, Xu, He, and Wazwaz provided a 

comprehensive analysis of VIM's reality, potential, and challenges [5], thereby further establishing its 

significance in the field. Building on this foundation, Ji-Huan and Kong demonstrated [6] the effectiveness 

of VIM in addressing Bratu-like equations encountered in electrospinning processes, as verified in 

publication Carbohydrate Polymers. Wang, Xu, and Atluri [7] advanced the methodological framework by 

combining VIM with numerical algorithms to tackle nonlinear problems efficiently. Moreover, Feng, Yue, 

and Wang introduced a quasi-linear local variational iteration method tailored for orbit transfer problems [8]. 

Recently, Kayabaşı, Düz, and Issa further demonstrated the VIM's adaptability by applying it to the solution 

of 2nd order linear differential equations with constant coefficients [9]. Through these studies, the VIM has 

emerged as a powerful analytical tool with broad applications across scientific disciplines.  

Mungkasi laid the foundation for the application of VIM and approximation methods in analyzing 

[10]. SIR epidemic model incorporating a constant strategy. This work provided crucial insights into 

epidemic modeling and control strategies, setting the stage for further developments in the field. Building 

upon this initial exploration, Sing [11] broadened the scope of variational iteration techniques by presenting 

semi-analytical solutions for three-dimensional coupled Burgers' equations using a novel Laplace Variational 

iteration approach. The researchers highlighted the versatility of variational iteration methods. After this, 

Shirazian introduced a novel acceleration of the variational iteration method specifically tailored for initial 

value problems [12]. This development tackled significant computing difficulties related to initial value 

issues. Simultaneously, Doevea, Masjedi, and Weaver presented a semi-analytical approach for the static 

analysis of composite beams [13], thereby broadening the applicability of variational iteration approaches. 

Considering the future using a modified VIM, Asaduzzaman et al. [14] presented methodical 

solutions to nonlinear Fornberg-Whitham type equations, contributing to the ongoing progress in this field. 

This groundbreaking work addressed basic issues in mathematical modeling and numerical analysis in 

addition to expanding the use of variational iteration techniques to nonlinear Partial Differential Equation 

(PDEs). Researchers have developed a new method for handling nonlinear PDEs i.e., the New Laplace VIM 

[15]. A Modified VIM [16]  was developed by Elsheikh and Elzaki to solve 4th order parabolic PDEs with 

variable coefficients building on this framework. 

Many studies have been conducted on the usage of the VIM for resolving nonlinear equations, 

especially in the context of optical phenomena. Dr. Abdul-Majid Wazwaz has played a significant role in the 
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advancement of this discipline. From basic studies, where he demonstrated how effective VIM is for solving 

[17] linear and nonlinear ODEs, Dr. Wazwaz has gradually explored the complexities of optical solitons. 

Investigations into optical Gaussons [18], bright and dark soliton solutions [19], and a range of optical 

solitons with detuning terms [20] are among the noteworthy contributions. Dr. Wazwaz's research has 

broadened the usage of VIM in optical phenomena modeling by utilizing it for [21] optical solutions and 

Peregrine solutions in nonlinear Schrödinger equation calculations. These days, VIM may be found in a wide 

range of applications and can be compared to other well-known techniques as Laplace VIM, Adomian 

decomposition, transfer matrix method, and homotopy perturbation to endorse its effectiveness [22–25]. 

Specifically, it is quite adept for the resolution of linear, nonlinear Ordinary Differential Equation (ODEs), 

integral equations, PDEs, and delay equations [26–33]. If we compared VIM's computational performance 

with other methods by examining factors such as convergence speed, accuracy, and robustness across a range 

of test problems, VIM has demonstrated an overall competitive performance, often outperforming traditional 

numerical methods in terms of efficiency and accuracy, particularly in handling nonlinear equations and 

problems with irregular boundaries. 

Some challenges associated with applying VIM include its sensitivity to initial approximations, 

difficulty handling singularities, and the need for manual convergence criteria determination. To address 

these, we employed robust initialization techniques to minimize sensitivity, utilized regularization methods 

for singularities, and automated convergence criteria for reliability.  

Our aim is to delve into the convergence properties of VIM specifically for nonlinear equations and 

to establish the necessary conditions for convergence. The VIM, extensively utilized by numerous 

researchers, exhibits rapid convergence of successive approximations and effectively tackles both linear and 

nonlinear problems alike. In this paper, our primary focus is on investigating the convergence of the VIM for 

ODEs and introducing an alternative approach to handle such challenges. 

2 Variational Iteration Method 

We will go over the fundamental ideas of the VIM in this part. The findings presented in this section 

are also available in [4],[5],[34],[35] and the associated references. Let's now examine the subsequent system. 

 𝒯𝑢(𝜁) = ℊ(𝑦),    𝜁 ∈ 𝐼.               (2.1) 

In this ℊ(𝑦) is a given function, u is a continuous function for 𝜁 ∈  𝐼, and T is a differential operator. 

Dividing the differential operator T into its linear and nonlinear components is a crucial component of VIM. 

  ℒ𝜁 + 𝒩𝜁 = ℊ(𝑦).             (2.2) 

Where, the linear and nonlinear operators are represented by the letters L and N respectively. The 

Lagrange multiplier approach is modified by the VIM [35-38]. We shall briefly discuss the Lagrange 

multiplier approach and its relationship to the VIM in the sections that follow. This excerpt is from [4,5] 

where 𝜂0 is an initial function used in the Lagrange multiplier method that fulfills 𝐿𝜁0  =  0. Next, utilizing 

the useful, it is represented as: 

𝜁(𝜏1) = 𝜁0(𝜏) + ∫ 𝜆{ℒ𝜁0(𝑦) + 𝒩𝜁0(𝑦) − ℊ(𝑦)}𝑑𝑦
1

0
.             (2.3) 

At a unique location 𝜁, an approximation is obtained. Here, the Lagrange multiplier is denoted by 𝝀. 

In this way, he builds the corrective functional: 

𝜁𝑛+1(𝜏) = 𝜁𝑛(𝜏) + ∫ 𝜆{ℒ𝜁𝑛(𝑦) + 𝒩𝜁�̅�(𝑦) − ℊ(𝑦) } 𝑑𝑦.
𝜏

0
          (2.4) 

Where 𝜆 =  𝜆(𝑦; 𝜏) is referred to as the Lagrange multiplier which the variational theory allows for 

identification. The iterates 𝜁(𝜏) represent the 𝑛𝑡ℎ order approximate solution and the 𝜁(𝑦) denote the 

restricted variations, that is, 𝛿𝜁𝑛(𝑦) = 0 for all 𝑛 ∈  𝑁. 
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Determining the Lagrange multiplier that fulfills the following equation is the fundamental notion 

behind the methods [34,35]. 

  𝛿𝜁𝑛+1(𝜏) = 𝛿𝜁𝑛(𝜏) + 𝛿 ∫ 𝜆{ℒ𝜁𝑛(𝑦) + 𝒩𝜁�̅�(𝑦) − ℊ(𝑦)}𝑑𝑦 = 0.
𝜏

0
                      (2.5) 

In the realm of nonlinear differential equations, achieving Lagrange multipliers often involves 

employing restricted variations. Minimizing the reliance on restricted variations enhances the precision of 

Lagrange multipliers, thereby expediting the approximation process. Despite the widespread interest in VIM, 

there has been limited advancement in adapting the method to systems of differential equations, particularly 

ordinary differential equations (ODEs).  

3 Methodology 

In this section, we utilize VIM to solve differential equations of the specified kind. 

𝜁𝑗 = 𝑓(𝜁, 𝜁′, 𝜁′′, … , 𝜁𝑗).                        (3.1) 

Due to their widespread occurrence in a variety of applications, the differential equations represented 

by equation (3.1) have been extensively studied in [15] and [26-29]. As was indicated in the previous chapter, 

the following correction functional for 𝑛 ≥ 0 is obtained when the VIM is applied to this system. 

                  𝜁𝑛+1(𝜏) = 𝜁𝑛(𝜏) + (−1)𝑗 ∫
(𝑦−𝜏)𝑗−1

(𝑗−1)!

𝜏

0
[𝜁𝑛

𝑗 − 𝑓(𝜁𝑛, 𝜁𝑛
′ , 𝜁𝑛

′′, … , 𝜁𝑛
𝑗)]𝑑𝑦.                           (3.2) 

Proof: 

 This function is derived using mathematical induction.: 

For j = 1: if we are given an equation in the following format  

𝜁′(𝜏) = 𝑓(𝜁, 𝜁′).                         (3.3) 

Our goal demonstrates the following correction functional that exists in Equation (3.3)  

                                    𝜂𝑛+1(𝜏) = 𝜁𝑛(𝜏) − ∫ [𝜁𝑛
′ (𝑦) − 𝑓(𝜁𝑛, 𝜁)]𝑑𝑦, 𝑛 ≥ 0.

𝜏

0
                        (3.4) 

The equation (3.3) is associated with the correction functional described below. 

𝛿𝜁𝑛+1(𝜏) = 𝛿𝜁𝑛(𝜏) + 𝛿 ∫ 𝜆(𝜏, 𝑦)[𝜁𝑛
′ (𝑦) − 𝑓(𝜁𝑛,

𝜏

0

𝜁𝑛
′ )] 𝑑𝑦 

=𝛿𝜁𝑛(𝜏) + 𝛿 ∫ 𝜆(𝜏, 𝑦)
𝜏

0
𝜁𝑛

′ (𝑦)𝑑𝑦 − ∫ 𝜆(𝜏, 𝑦)𝛿𝑓(𝜁𝑛, 𝜂𝑛
′ )𝑑𝑦.

𝜏

0
 

Since 𝑓(𝜁𝑛 , 𝜂𝑛
′ ). are a restricted variable, then 𝛿𝑓(𝜁𝑛 , 𝜁𝑛

′ ) = 0, and therefore we get 

𝜁𝑛+1(𝜏) = 𝛿𝜁𝑛(𝜏) + 𝛿 ∫ 𝜆(𝜏, 𝑦)
𝜏

0

𝜁𝑛
′ 𝑑𝑦 

 = (1 + 𝜆(𝜏, 𝑦))|
𝑦=𝜏

𝛿𝜁𝑛(𝜏) − ∫
𝜕𝜆(𝜏, 𝑦)

𝜕𝑦
𝛿𝜁𝑛𝑑𝑦

𝜏

0

. 

Stationary conditions are: 
𝜕𝜆

𝜕𝑦
= 0, and (1 + 𝜆(𝜏, 𝑦))|

𝑦=𝜏
= 0. 

By these conditions, we derive: 

𝜆(𝜏, 𝑦) = −1. 

From now, for (3.3) we have the subsequent formula 

𝜁𝑛+1(𝜏) = 𝜁𝑛(𝜏) − ∫ [𝜁𝑛
′ (𝑦) − 𝑓(𝜁𝑛 , 𝜁𝑛

′ )]𝑑𝑦, 𝑛 ≥ 0
𝜏

0
.              (3.5) 

Therefore (3.2) is true for 𝑗 =  1. 

1. This phase assumes (3.2) holds true for 𝑗 =  𝑚, that is, if the 𝑚𝑡ℎ order differential equation is taken 

into consideration. 

𝜁(𝑚) = 𝑓(𝜁, 𝜁′, 𝜁′′, … , 𝜁𝑚).             (3.6) 
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𝜁𝑛+1(𝜏) = 𝜁𝑛(𝜏) + ∫ 𝜆(𝜏, 𝑦)[𝜁𝑛
𝑚(𝑦) − 𝑓(𝜁, 𝜁′, 𝜁′′, … , 𝜁𝑚)]𝑑𝑦, 𝑛 ≥ 0

𝜏

0

. 

After taking variation, the equation becomes:  

= 𝛿𝜁𝑛(𝜏) + ∫ 𝜆(𝜏, 𝑦)𝛿𝜁𝑛
𝑚(𝑦)𝑑𝑦 − ∫ 𝜆(𝜏, 𝑦)𝛿𝑓(𝜁, 𝜁′, 𝜁′′, … , 𝜁𝑚)

𝜏

0
𝑑𝑦

𝜏

0
. 

Since 𝛿𝑓(𝜁, 𝜁′, 𝜁′′, … , 𝜁𝑚) = 0,  then  

𝛿𝜁𝑛+1(𝜏) = 𝛿𝜁𝑛(𝜏) + ∫ 𝜆(𝜏, 𝑦)𝛿𝜁𝑛
𝑚(𝑦)𝑑𝑦.

𝜏

0

 

Based on our supposition, the Lagrange multiplier value that renders 𝜁𝑛+1 (𝜏) stationary, that is, 𝛿𝜂𝑛+1  

(𝜏) = 0; we get: 

𝜆(𝜏, 𝑦) =
(𝑦 − 𝜏)𝑚−1

(𝑚 − 1)!
(−1)𝑚 . 

𝜁𝑛+1(𝜏) = 𝜁𝑛(𝜏) + (−1)𝑚 ∫
(𝑦−𝜏)𝑚−1

(𝑚−1)!

𝜏

0
[𝜁𝑛

𝑘 − 𝑓(𝜁𝑛, 𝜁𝑛
′ , 𝜁𝑛

′′, … , 𝜁𝑛
𝑚)]𝑑𝑦, 𝑛 ≥ 0.                      (3.7) 

2. Now to show Equation (3.2) for 𝑗 =  𝑚 +  1, for the (𝑚 +  1)𝑡ℎ. 

𝜁𝑚+1 = 𝑓(𝜁, 𝜁′, 𝜁′′, … , 𝜁𝑚+1)                        (3.8) 

𝜁𝑛+1(𝜏) = 𝜁𝑛(𝜏) + (−1)𝑚+1 ∫
(𝑦 − 𝜏)𝑚

𝑚!

𝜏

0

[𝜁𝑛
𝑚 − 𝑓(𝜁𝑛, 𝜁𝑛

′ , 𝜁𝑛
′′, … , 𝜁𝑛

𝑚)]𝑑𝑦, 𝑛 ≥ 0. 

Now Equation (3.8) has functional:  

𝜁𝑛+1(𝜏) = 𝜁𝑛(𝜏) + ∫ 𝜆(𝜏, 𝑦)[
𝜏

0
𝜁𝑛

𝑚+1 − 𝑓(𝜁𝑛, 𝜁𝑛
′ , 𝜁𝑛

′′, … , 𝜁𝑛
𝑚+1).             (3.9)  

By variation:  

𝛿𝜁𝑛(𝜏) + 𝛿 ∫ 𝜆(𝜏, 𝑥)𝜁𝑛
𝑚+1𝑑𝑦 −

𝜏

0

∫ 𝜆(𝜏, 𝑥)𝛿
𝜏

0

𝑓(𝜁𝑛, 𝜁𝑛
′ , 𝜁𝑛

′′, … , 𝜁𝑛
𝑚+1)𝑑𝑦. 

By the fact of restricted variation𝛿 𝑓((𝜁𝑛 , 𝜁𝑛
′ , 𝜁𝑛

′′, … , 𝜁𝑛
𝑚+1))𝑑𝑦 = 0 , 

= 𝛿𝜁𝑛(𝜏) + 𝜆(𝜏, 𝜏)𝛿𝜁𝑚(𝜏) − 𝛿 ∫
𝜕𝜆

𝜕𝑦
𝜁𝑛

𝑚𝑑𝑦
𝜏

0

 

To make 𝜁𝑛+1 stationary, that is, 𝛿𝜁𝑛+1 = 0, our goal is to choose 𝜆(𝜏, 𝑦) that satisfies the subsequent 

requirements. 

 𝜆(𝜏, 𝑦)|𝑦=𝜏 = 0,  and  𝛿𝜁𝑛(𝜏) − 𝛿 ∫
𝜕𝜆

𝜕𝑦
𝜁𝑛

𝑚𝑑𝑦 = 0
𝜏

0
.        (3.10) 

According to step 2, The solution of (3.10) is:  
−𝜕𝜆

𝜕𝑦
= (𝑦 − 𝜏)𝑚−1 (−1)𝑚

(𝑚−1)!
.         (3.11) 

With initial condition: 

 𝜆(𝜏, 𝑦)|𝑦=𝜏  =  0. 

Hence, 

𝜆(𝜏, 𝑦) = (𝑦 − 𝜏)𝑚 (−1)𝑚+1

(𝑚)!
. 

Thus, the next correction functional are: 

𝜁𝑛+1(𝜏) = 𝜁𝑛(𝜏) + ∫ (𝑦 − 𝜏)𝑚−1
(−1)𝑚

(𝑚 − 1)!
[𝜁𝑛

𝑚+1 − 𝑓(𝜁𝑛 , 𝜁𝑛
′ , 𝜁𝑛

′′, … , 𝜁𝑛
𝑚+1)𝑑𝑦.

𝜏

0

 

So, (3.2) is true ∀ 𝑚 ≥ 1. 

The initial conditions can be used to choose the zeroth approximation for convergence. (3.1) calls for the 

following usage of 𝜁0 (𝜏): 

𝜁0(𝜏) = 𝜁(0) + 𝜏𝜁′(0) +
𝜏

2!
𝜁′′(0) + ⋯ +

𝜏𝑚−  1

(𝑚 −   1)!
𝜁𝑚−1(0). 
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Example 3.1 Solving the nonlinear differential equation. 

𝜁′′′(𝑡) + 𝑒𝑡𝜁2(𝑡) = 0.  

Statioinary conditions are:  

𝜁(0) = 1, 𝜁′(0) = −1, 𝜁′′(0) = 1. 

For this problem, we have the next iteration:  

𝜁𝑛+1(𝜏) = 𝜁𝑛(𝜏) − ∫
(𝑦 − 𝜏)2

2!
[𝜁𝑛

′′′ + 𝑒𝑥𝜁𝑛
2(𝑦)]𝑑𝑦.

𝜏

0

 

𝜁0(𝑡) = 1 − 𝜏 +
𝜏2

2!
. 

Hence, 

𝜁1(𝜏) = 𝜁0(𝜏) − ∫
(𝑦 − 𝜏)2

2!

𝜏

0

 [𝜁0
′′′ + 𝑒𝑦𝜁0

2(𝑦)]𝑑𝑦 

= 10𝑡𝜏2 − 29𝑒𝜏𝜏2 + 182 + 70𝜏 + − (
1

4
) 𝑒𝜏𝜏4 + 4𝑒𝜏𝜏3 − 181𝑒𝜏 + 110𝑒𝜏𝜏2 

𝜁2(𝜏) = 𝜁1(𝜏) − ∫
(𝑦 − 𝜏)2

2!

𝜏

0

 [𝜁1
′′′ + 𝑒𝑦𝜁1

2(𝑦)]𝑑𝑦 + 

4953.831576 + 11106.03125𝑒2𝜏 . 
 

4 Method’s Convergence  

We examine the iteration method's convergence in this section, which was covered in the preceding 

section. Lets think about the overall nonlinear issue.        

𝜁𝑗 = 𝑓(𝜁, 𝜁′, 𝜁′′, … , 𝜁𝑗).                        (4.1) 

With initial condition: 

𝜁(0) = 𝐴0, 

𝜁′(0) = 𝐴1, 

𝜁′′(0) = 𝐴2, 

⋮ 

𝜁𝑗−1(0) = 𝐴𝑚−  1. 

Then (4.1) is, 

𝜁(𝜏) = 𝜁𝑛(𝜏) + (−1)𝑚 ∫
(𝑦−𝑡)𝑛

𝑚−1

(𝑚−1)!
[𝜁𝑛

𝑚 −
𝜏

0
𝑓(𝜁𝑛 , 𝜁𝑛

′ , 𝜁𝑛
′′, … , 𝜁𝑛

𝑚)] 𝑑𝑦.              (4.2) 

solution can be determind as 

𝜁(𝜏) = lim
𝑛→∞

𝜁𝑛(𝜏). 

We define a new operator to investigate the convergence of this approach. 

 𝑊[𝜌] = ∫ (𝑦 − 𝜏)𝑚−1 (−1)𝑚

𝑚−1
[𝜌𝑚 − 𝑓(𝜌, 𝜌′. 𝜌′′, … , 𝜌𝑚]𝑑𝑦.

𝜏

0
         (4.3) 

Hence, Equation (4.2) becomes 

𝜁(𝑛+1) (𝜏) = 𝜁𝑛(𝜏) + 𝑊[𝜁𝑛],            (4.4) 

or,  

𝑊[𝜁𝑛] = 𝜁𝑛+1(𝜏) − 𝜁𝑛(𝜏). 

While defining the following components 𝑧𝑘, we get:  

𝑧0 = 𝜁0 

𝑧1 = 𝑊[𝑧0] = 𝑊[𝜂0] = 𝜁 − 𝜁0. 
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𝑧2 = 𝑊[𝑧0 + 𝑧1] = 𝑊[𝜁] = 𝜁2 − 𝜁1. 

⋮ 

  𝜁𝑛+1 = 𝑊[𝑧0 + 𝑧1 + 𝑧2 + ⋯ + 𝑧𝑘] = 𝑊[𝜁] = 𝜁𝑘+1 − 𝜁𝑘.                      (4.5) 

Given that the series of 𝑧𝑘 is telescoping and convergent, the solution 𝜁(𝜏) will be: 

𝜁(𝜏) = lim
𝑘→∞

𝜁𝑘(𝜏) 

= ∑ 𝑧𝑗
∞
𝑗=0 . 

 

If the first approximation 𝑧0 =  𝜁0 meets the problem's initial criteria, it can be chosen. We make use of the 

initial values in this paper. 

 𝜁𝑚(0) = 𝑐𝑚 , 𝑚 = 0,1,2, … , 𝑘 − 1  

𝑧0 = ∑
𝑐𝑚

𝑚!
𝑡𝑚 .

𝑘−1

𝑚=0

 

The findings of this section are stated in next theorems. 

Theorem 4.2.1.[5] If B is an operator acting on a Hilbert space Y, as specified in Equation (4.3), then the 

solution can be stated as: . 

𝜁(𝑡) = ∑ 𝑧𝑚(𝑡)∞
𝑚=0 . 

Converges in the event that 0 < 𝛾 < 1 exists, so that:  

‖𝑧𝑚+1‖ ≤ 𝛾‖𝑧𝑚‖, 

i.e. 

‖𝑊[𝑧0 + 𝑧1 + ⋯ +  𝑧𝑚+1]‖ ≤ 𝛾‖ 𝑊[𝑧0 + 𝑧1 + ⋯ + 𝑧𝑚] ‖, 𝑚 = 0,1,2 …. 

Proof. First, let us define the sum {𝑏𝑛}𝑛=0
∞  as,  

𝑏0 = 𝑧0 

𝑏1 = 𝑧0 + 𝑧1 

⋮ 

𝑏𝑛 = 𝑧0 + 𝑧1 + 𝑧2 + ⋯ + 𝑧𝑛 . 

To show it is convergent. So, we take into consideration: 

 ‖𝑏𝑛+1 − 𝑏𝑛‖ = ‖𝑧𝑛+1‖ ≤ 𝛾 ‖ 𝑧𝑛  ‖≤ 𝛾2 ‖𝑧𝑛−1‖ ≤ ⋯   ≤ 𝛾𝑛+1‖𝑧0‖ 

Hence, for 𝑛, 𝑚 ∈ ℕ, 𝑛 ≥ 𝑚, and employing triangle inequality 

‖𝑏𝑛 − 𝑏𝑚‖ = ‖(𝑏 − 𝑏𝑛−1) + (𝑏𝑛−1 − 𝑏) + ⋯ + (𝑏𝑚+1 − 𝑏𝑚)‖ 

‖𝑏𝑛 − 𝑏𝑚‖ ≤
1 − 𝛾𝑛−𝑚

1 − 𝛾
𝑦𝑚+1‖𝑢0‖. 

Since 0 < 𝛾 < 1 , 

lim
𝑛,𝑚→∞

‖𝑏𝑛 − 𝑏𝑚‖ = 0. 

Which implies the sequence {𝑏𝑛}𝑛=0
∞  This statement implies that the sequence exhibits the Cauchy property 

within the Hilbert Space Y, implying that 𝜁(𝑡) = ∑ 𝑧𝑚(𝑡) ∞
𝑚=0 converges. 

 

Theorem 4.2.2.[5] The ζ(t) = ∑ zm(t)∞
m=0  is an exact solution for (4.1) if it converges. 

Proof. Let us assume that the answer to the series converges. 

𝜁(𝑡) = ∑ 𝑧𝑚(𝑡),

∞

𝑚=0

 

then 

lim
𝑚→∞

𝑧𝑚 = 0 
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∑ (𝑧𝑚+1 − 𝑧𝑚) = 𝑧𝑛+1 − 𝑧0

𝑛

𝑚=0

. 

After 𝑛 goes to ∞, then we differentiating both sides 𝑘 times,  

∑
𝑑𝑘

𝑑𝑡𝑘
(𝑧𝑚+1 − 𝑧𝑚) = −

𝑑𝑘

𝑑𝑡𝑘
𝑧0

∞

𝑚=0

. 

Since,  

𝑧0 = ∑
𝑐𝑚

𝑚!
𝑡𝑚𝑘−1

𝑚=0 . 

Largest power is 𝑘 − 1, i.e. 

𝑑𝑘

𝑑𝑡𝑘 𝑧0 = 0.                            (4.6) 

∑
𝑑𝑘

𝑑𝑡𝑘
(𝑧𝑚+1 − 𝑧𝑚) = 0.∞

𝑚=0                                       (4.7) 

𝐹(𝑧𝑚) = 𝑓 ([𝑧0 + 𝑧1 + ⋯ + 𝑧𝑚], [𝑧0 + 𝑧1 + ⋯ + 𝑧𝑚]′, … ,
𝑑𝑘

𝑑𝑡𝑘
[𝑧0 + 𝑧1 + ⋯ + 𝑧𝑚]) , 

where 𝑚 ≥ 0 from (4.3), we have for 𝑛 ≥ 1 

𝑑𝑘

𝑑𝑡𝑘
[𝑧𝑚+1 − 𝑧𝑚] =

𝑑𝑘

𝑑𝑡𝑘
[𝐵 [∑ 𝑧𝑗(𝑡)

𝑚

𝑗=0

] − 𝐵 [ ∑ 𝑧𝑗(𝑡)

𝑚−1

𝑗=0

]] 

= −
𝑑𝑘

𝑑𝑡𝑘
∫

(−1)𝑚(𝑦 − 𝑡)𝑘−1

(𝑘 − 1)!
[

𝑑𝑘

𝑑𝑦𝑘
( ∑ 𝑧𝑗(𝑦)

𝑚−1

𝑗=0

) − 𝐹(𝑧𝑚−1)] 𝑑𝑦
𝑡

0

. 

Thus, 

𝑑𝑘

𝑑𝑡𝑘 [𝑧𝑚+1 − 𝑧𝑚]. 

Which is equivalent to: 

𝑑𝑘

𝑑𝑡𝑘
∫

(−1)𝑘(𝑦 − 𝑡)𝑘−1

(𝑘 − 1)!
[

𝑑𝑘

𝑑𝑡𝑘
∑ 𝑧𝑗(𝑦) −

𝑑𝑘

𝑑𝑡𝑘
∑ 𝑧𝑗(𝑦) − 𝐹(𝑧𝑚) + 𝐹(𝑧𝑚−1)

𝑚−1

𝑗=0

𝑚

𝑗=0

] 𝑑𝑦.
𝑡

0

 

Given that the 𝑘𝑡ℎ fold integral's 𝑘𝑡ℎ derivative is its left inverse, we obtain: 

∑
𝑑𝑘

𝑑𝑡𝑘
[𝑧𝑚+1 − 𝑧𝑚]

𝑛

𝑚=0

=
𝑑𝑘

𝑑𝑡𝑘
[𝑧1 − 𝑧0] + ∑ (

𝑑𝑘𝑧𝑚

𝑑𝑡𝑘
− 𝐹(𝑧𝑚) + 𝐹(𝑧𝑚−1) )

𝑛

𝑚=1

. 

According to (4.3) and (4.6), we have:  

𝑑𝑘

𝑑𝑡𝑘
𝑧0 = 0, 

∑
𝑑𝑘

𝑑𝑡𝑘
[𝑧𝑚+1 − 𝑧𝑚] =

𝑑𝑘𝑢0

𝑑𝑡𝑘
− 𝐹(𝑧0)

𝑛

𝑚=0

 

+
𝑑𝑘𝑧1

𝑑𝑡𝑘
− 𝐹(𝑧1) + 𝐹(𝑧0) 

+
𝑑𝑘𝑧2

𝑑𝑡𝑘
− 𝐹(𝑧2) + 𝐹(𝑧1) 

⋮ 

+
𝑑𝑘𝑧𝑛

𝑑𝑡𝑘
− 𝐹(𝑧𝑛) + 𝐹(𝑧𝑛−1), 
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=
𝑑𝑘

𝑑𝑡𝑘
∑ 𝑧𝑚 − 𝑓 ( ∑ 𝑧𝑚 , ∑ 𝑧𝑚

′ , … , ∑
𝑑𝑘

𝑑𝑡𝑘
𝑧𝑚

𝑛

𝑚=0

𝑛

𝑚=0

𝑛

𝑚=0

)

𝑛

𝑚=0 

. 

When 𝑛 approaches ∞ and we apply (4.7), we get following equation. Consequently, 
𝑑𝑘

𝑑𝑡𝑘
∑ 𝑧𝑚 − 𝑓∞

𝑚=0 (∑ 𝑧𝑚 , ∑ 𝑧𝑚
′ , … , ∑

𝑑𝑘

𝑑𝑡𝑘 𝑧𝑚
∞
𝑚=0

∞
𝑚=0

∞
𝑚=0 ) = 0.                 (4.8) 

Hence, from (4.8) we can observe that: 

∑ 𝑧𝑚
∞
𝑚=0 , 

which is noted as the exact solution. 

𝜁𝑘 = 𝑓(𝜁, 𝜁′, 𝜁′′, … , 𝜁𝑘).  

Theorem 4.2.3 Soppose that the solution 𝜁(𝑡) is reached by the series ∑ 𝑧𝑚
∞
𝑚=0  . By approximating the 

solution 𝜁(𝜏) with ∑ 𝑧𝑚
𝑖
𝑚=0  , we may determine the maximum error 𝐸𝑗  (𝜏) as 

𝐸𝑗(𝜏) ≤
𝜆𝑗+1

1 − 𝜆
‖𝑧0‖. 

Proof. From Theorem (4.1.1), we have  

‖𝑏𝑛 − 𝑏𝑗‖ ≤
1 − 𝜆𝑛−𝑗

1 − 𝜆
𝜆𝑗+1‖𝑧0‖, 𝑛 ≥ 𝑗. 

If 𝑛 → ∞, then, 

‖𝜂(𝜏) − 𝑏𝑗‖ ≤ lim
𝑛→∞

1 − 𝜆𝑛−𝑗

1 − 𝜆
𝜆𝑗+1‖𝑧0‖. 

Since 0 < 𝛾 <,then  

lim
𝑛→∞

(1 − 𝜆𝑛−𝑗) = 1. 

Therefore,  

‖𝜂(𝜏) − 𝑠𝑗‖ ≤
𝜆𝑗+1

1 − 𝜆
‖𝑧0‖. 

Remark 4.2.1 If there exists 0 < 𝜆 < 1, such that, the solution ∑ 𝑧𝑚
𝑖
𝑚=0  converges to the exact solution 

𝜂(𝑡). 

‖𝑊[𝑧0 + 𝑧1 + ⋯ + 𝑧(𝑚+1)]‖ ≤ 𝜆‖ 𝑊[𝑧0 + 𝑧1 + ⋯ + 𝑧(𝑚)]‖. 

Equivalently,  

‖𝑧𝑚+1‖ ≤ 𝜆 ‖𝑧𝑚‖ 
‖𝑧𝑚+1‖

‖𝑧𝑚‖
 ≤  𝜆. 

If we define:  

{
𝛽𝑚 =

‖𝑧𝑚 + 1‖

‖𝑧𝑚‖
,    𝑖𝑓 ‖𝑧𝑚‖ ≠  0; 

0,                                   ‖𝑧𝑚‖ = 0

} 

If 𝛾𝑚 < 1 for every 𝑚 ≥ 0, the series solution ∑ 𝑧𝑚
𝑖
𝑚=0   will then converge to the precise solution 𝜁(𝑡). 

Remark 4.2.2 The series solution ∑ zm
i
m=0   converges to the exact solution ζ(t), provided that γm > 1, as 

indicated in the previous statement, for 0 < m ≤ k. 

𝛾𝑚 ≥ 1, 𝑖𝑓 0 ≤ 𝑚 ≤ 𝑘 

𝛾𝑚 < 1 , 𝑖𝑓 𝑚 ≥ 𝑘  

The series solution's convergence is unaffected by the initial finite terms. 

Example 4.2.1 Find the convergence of this method using some examples. 

𝜁′′(𝜏) + 𝜁(𝜏) = 0,         0 ≤ 𝜏 ≤ 1,  
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Based on the conditions, 

𝜁(0) = 0,     𝜁′(0) = 1. 

The next iteration are: 

𝑧0 = 𝜏, 

𝑧1(𝜏) =  ∫ (𝑦 − 𝜏)[𝑧0
′′(𝑦) + 𝑧0(𝑦)]𝑑𝑦

𝜏

0

 

=
1

3!
𝜏3 

𝑧2(𝜏) =  ∫ (𝑦 − 𝜏)[𝑧0 + 𝑧1)′′ + 𝑧0(𝑦) + 𝑧1(𝑦)] 𝑑𝑦
𝜏

0

 

=
1

5!
𝜏5 

𝑧3𝜏 = ∫ (𝑦 − 𝜏)[𝑧0 + 𝑧1 + 𝑧2)′′ + 𝑧0(𝑦) + 𝑧1(𝑦) + 𝑧2] 𝑑𝑦
𝜏

0

 

=
1

7!
𝜏7 

⋮ 

𝑧𝑛𝜏 = ∫ (𝑦 − 𝜏)
𝜏

0

[𝑧0 + 𝑧1 + 𝑧2 + 𝑧3 + ⋯ + 𝑧𝑚−1)′′ + 𝑧0(𝑦) + 𝑧1(𝑦) + 𝑧2 + 𝑧3 + ⋯ + 𝑧𝑚−1]𝑑𝑦 

=
(−1)𝑚

(2𝑚 + 1)!
𝜏2𝑚+1 . 

Note that ∑ 𝑧𝑚
𝑖
𝑚=0 , the obtained solution, converges to solution. 

𝜁(𝜏) = sin(𝜏). 

Moreover, by computing 𝛾𝑚 ,  we get 

𝛾0 =
‖𝑧1‖

‖𝑧0‖
 

=
‖𝜏3/3!‖

‖𝜏‖
=

1

3!
 

𝛾1 =
‖𝑧2‖

‖𝑧1‖
 

=
‖𝜏5/5!‖

‖𝜏3/3!‖
=

3!

5!
 

⋮ 

𝛾𝑘 =
‖𝑧𝑚+1‖

‖𝑧𝑚‖
 

=
‖𝜏2𝑚+3/(2𝑚 + 3)! ‖

‖𝜏(2𝑚+1)/(2𝑚 + 1)! ‖
=

(2𝑚 + 3)!

(2𝑚 + 1)!
  

where  

‖𝑧𝑚‖ = sup
𝜏∈(0,1)

|𝑧𝑚(𝜏)|, 

since 𝛾𝑚 < 1 for all 𝑚 ≥ 0, then the exact answer 𝑠𝑖𝑛(𝜏) is where the VIM converges. 

Example 4.2.2 Let solve another example. 

  𝜁(𝜏) + 𝜁3(𝜏) − 𝜏3 − 3𝜏2 − 3𝜏 − 2,   0 < 𝜏 ≤ 1.          (4.9) 

Based on the condition, 

𝜂(0) = 1. 
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Formula can be constructed as: 

𝑧0 = 1, 

𝑧1 = − ∫ [𝑧0
′ (𝑦) + 𝑧0

3(𝑦) − 𝑦3 − 3𝑦2 − 3𝑦 − 2]𝑑𝑦
𝜏

0

 

=
1

4
𝜏4 + 𝜏3 +

3

2
𝜏2 + 𝜏 

𝑢2 = −
3

2𝜏2 −
5

2
𝜏3 −

13

4
𝜏4 −

18

5
𝜏5 −

27

8
𝜏6 −

21

8
𝜏7 −

27

16
𝜏8 −

7

8
𝜏9 −

11

32
𝜏10 −

3

32
𝜏11 −

1

64
𝜏12

−
1

832
𝜏13  

𝑢3 = 1.94074862𝜏{14} +  2.334375𝜏8 +  4.125𝜏4 −  5.2875𝜏9 +  7.2𝜏5 −  8.909375𝜏{13}

+  7.478571429𝜏7 −  12.71375𝜏{10} +  8.925𝜏6 −  15.7196875𝜏{12} +  1.5𝜏3

−  16.89136364𝜏{11} + ⋯ 

⋮ 

It is evident that the solution ∑ 𝑧𝑘 𝑖
𝑘=0  fails to approach the precise answer 𝜁(𝜏) = 1 + 𝜏. 

For all 𝑚 >  0, in this case, 𝛾𝑚 are not less than 1. Therefore, we demonstrate the convergence 

using the method below. The iteration formula for (4.9) is as follows: 

𝜁𝑛+1(𝜏) = 𝜁𝑛(𝜏) − ∫ [𝜁𝑛
′ (𝑦) + 𝜁𝑛

3(𝑦) − 𝑦3 − 3𝑦 − 2]𝑑𝑦, 𝑛 ≥ 1,
𝜏

0
                  (4.10) 

with 𝜁0(𝜏) = 1. After deducting 𝜂(𝜏) from both sides of (4.10), we arrive at:  

𝜁𝑛+1(𝜏) − 𝜁(𝜏) = 𝜁𝑛𝜏 − 𝜁(𝜏) − ∫ [𝜁𝑛
′ (𝑦) + 𝜁𝑛

3(𝑦) − 𝑦3 − 3𝑦 − 2]𝑑𝑦.
𝜏

0

 

When we modify the integral by adding and subtracting 𝜁′(𝑦), the precise solution is 𝜁(𝑡):  

𝜁′(𝜏) = 𝜏3 + 3𝜏2 + 3𝜏 + 2 − 𝜁3(𝜏). 

Let 𝐸𝑛(𝜏) = 𝜁𝑛(𝜏) − 𝜁(𝜏), so we have : 

𝐸𝑛+1 = 𝐸𝑛(𝜏) − ∫ [𝐸𝑛
′ (𝑦) + 𝑦3 + 3𝑦2 + 3𝑦 + 2 − 𝜁𝑛

3(𝑦) − 𝑦3 − 3𝑦2 − 3𝑦 − 2]𝑑𝑦
𝜏

0

 

= 𝐸𝑛(𝜏) − ∫ [𝐸𝑛
′ (𝑦) − 𝜁3(𝑦) + 𝜁𝑛

3(𝑦)]𝑑𝑦
𝜏

0

 

We know that, 

𝐸𝑛(0) = 𝜁𝑛(0) − 𝜁(0) 

= 0. 

Hence, we have  

𝐸𝑛+1 = − ∫ (𝜂𝑛
3 (𝑦) − 𝜂3(𝑦))𝑑𝑦.

𝜏

0

 

Utilizing the 𝐿2 -norm on both sides of the final equation, 

‖𝐸𝑛+1(𝜏)‖𝐿2 = ‖ − ∫ (𝜁𝑛
3(𝑦) − 𝜁3(𝑦))𝑑𝑦‖𝐿2   

𝜏

0

 

≤ ∫ (‖𝜁𝑛
3(𝑦) − 𝜁3(𝑦)‖𝐿2)𝑑𝑦

𝜏

0
.          (4.11) 

Using mean value theorem. we find: 

‖𝐸𝑛+1𝜏‖𝐿2 ≤ 𝐾 ∫ ‖𝐸𝑛(𝑦)‖𝐿2

𝜏

0

 𝑑𝑦. 

Through induction: 
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‖𝐸0(𝑦)‖𝐿2 ≤ ‖𝐸0(𝑦)‖∞. 

Thus, we obtain: 

‖𝐸1𝜏‖𝐿2 ≤ 𝐾 ∫ ‖𝐸0(𝑦)‖𝐿2 𝑑𝑦
𝑡

0

 

≤ 𝐾2‖𝐸0𝜏‖∞ ∫ 𝑦𝑑𝑦 = 𝐾2‖𝐸0𝜏‖∞ (
𝜏2

2
) ,

𝜏

0

 

⋮ 

‖𝐸𝑛+1(𝜏)‖𝐿2 ≤ 𝐾 ∫ ‖𝐸𝑛(𝑦)‖𝐿2 𝑑𝑦
𝜏

0

 

≤= 1 + max
𝜏∈[0,1]

|𝜁(𝜏)|. 

According to be 𝜁(𝑦) the exact solution of (4.9) , then 𝜁(𝑦) ∈ 𝐶2[0,1], As a result, it is bounded, and 𝐸0(𝜏) 

follows suit. Let 𝑃 = max
𝜏∈[0,1]

|𝜁𝜏|, 

‖ 𝐸𝑛+1(𝜏) ‖𝐿2 ≤ 𝐾𝑛+1(1 + 𝑄)
𝜏(𝑛+1)

(𝑛+1)!
 .         (4.12) 

The sequence described in equation (4.12) on the right-hand side uniformly converges 0 to 𝑛 tends to 

infintly  

‖ 𝐸𝑛+1(𝜏) ‖𝐿2 → 0. 

This indicates a consistent convergence of 𝜁𝑛(𝜏) to 𝜁(𝜏) = 1 + 𝜏. 

5 Conclusion 

In conclusion, this paper presents a novel approach to solving ordinary differential equations using 

the VIM. The study provides error estimates and convergence conditions, extending our understanding of 

VIM's theoretical framework and practical use in linear and nonlinear models. Through application to 

simplified differential equations, the research illuminates VIM's iterative nature and underlying mechanisms. 

Overall, the findings highlight VIM's effectiveness in achieving precise solutions and offer insights into its 

convergence properties and computational efficiency. This investigation advances computational 

methodologies, laying groundwork for further exploration and application of VIM in computational science 

and engineering, fostering innovation and problem-solving. 
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