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ABSTRACT

In this work, A coupled system with Atangana Baleanu Caputo (ABC)−derivative under coupled
integral boundary conditions is examined. The study aims to develop necessary and sufficient con-
ditions for the existence and uniqueness of solution of the considered problem. In this connection,
results for a minimum of one solution are obtained through the employment of Krasnoselskii’s fixed
point theorem. The Ulam-Hyers (U-H) concept is used to establish stability-related results. Finally,
an example is given to illustrate the application of our found results.
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1 Introduction
The last thirty years have seen a significant increase in the study of fractional calculus. For the rea-

son that fractional differential systems and equations (FDEs) are crucial tools for describing physical
processes that arise in physics, engineering, economics, and other disciplines. Comparing arbitrary or-
der derivative to traditional integer order, it is amazing that the former is global in nature. This is one
of the operator’s many strengths. Because of these important applications, scholars have focused a lot
of attention on examining a variety of real-world issues and occurrences that fall under the purview of
the aforementioned calculus. In the realm of engineering [1,2], rheology [3], epidemiology [4], physical
sciences [5], signal and image processing [6], etc., some intriguing work has been conducted recently.
Scientists and researchers have focused on investigating FDEs in a variety of analyses, including sta-
bility, numerical, and qualitative theory, because of the significance of the aforementioned field. A lot
of work has been published in this area. Only a few are relevant here, such as the fixed point theory’s
existence theory of FDEs [7], degree theory’s qualitative results of FDEs [8], wavelet’s numerical anal-
ysis of FDEs [9], numerical study of fractional drinking model [10], spectrum analysis of FDEs [11],
decomposition technique for FDEs [12], and so on.

It is noteworthy that boundary value problems (BVPs) are widely used in mechanical engineering
and mass heat transfer modelling of a variety of phenomena. Consequently, a great deal of research
has been done in the area of BVPs under the umbrella of fractional calculus (see [13]). Very good re-
search has also been done on BVPs of FDEs with integrals in their circumstances. Due to the fact that
integral BVPs have many uses in practical domains such as chemical engineering, blood flow issues,
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population dynamics, subterranean water flow, and so on (see [14]). Remember that the aforemen-
tioned studies were examined using the standard Caputo or Reimann-Liouville fractional derivative.
As is well known, there are many definitions of integral and fractional order differential operators,
ranging from singular to non-singular. The aforementioned operators have been heavily utilised by
researchers in various investigations. Here, we make reference to a few published works, includ-
ing Mittag-Leffler type in [17], Caputo-Power law operator in [15], and Caputo-Fabrizio in [16]. The
Caputo-Fabrizio and ABC operators have been used to a wide range of real-world problems in a num-
ber of published research works, as shown in [18–26]. The authors of all the aforementioned works
have mostly addressed early value issues. The authors have concentrated on creating sufficient con-
ditions for the presence of a solution to the given problem by applying nonlinear analysis tools. In
this instance, we cite the research done on coupled systems with linked boundary conditions for the
iterative solution by authors [27] and [28]. Similar to this, writers [29] have used a monotone iterative
technique to study a linked system under coupled integral boundary conditions. However, all of the
aforementioned studies were conducted using standard Caputo power-law derivatives.

Shah, et.al [30] studied a coupled system of coupled integral BVPs using Caputo-Fabrizio (CF)
derivative. Since ABC derivative is the generalization of the aforementioned CF operator. Therefore,
we extend the said coupled system to investigate under ABC operators with coupled integral bound-
ary conditions for κ ∈ [0, T] = W as follows:

ABCDı1u(κ) = f1(κ, u(κ), v(κ)), 0 < ı1 ≤ 1,
ABCDı2v(κ) = f2(κ, u(κ), v(κ)), 0 < ı2 ≤ 1,
u(0) =

∫ T
0 g1(v(s))ds,

v(0) =
∫ T

0 g2(u(s))ds,

(1.1)

where f1, f2 : W × R2→R, g1, g2 : W →R, are continuous functions, and ϕ, ψ ∈ L(W ). The fixed point
theorems of Banach and Krasnoselsikii [31] are used to construct adequate conditions for the existence
and uniqueness of a solution. Additionally, stability is an important tool that has been investigated re-
cently very well for different problems in the sense of U-H type. Recently, authors [32], and [33] have
used the U-H concept to study stability analysis of different problems with various fractional differen-
tial operators. To elaborate further, in the realm of mathematical analysis and specifically within the
study of functional equations and dynamic systems, the concept introduced by Ulam-Hyers plays a
pivotal role in examining the stability of various mathematical models. This notion, primarily dealing
with the stability of functional equations, suggests a methodology to determine if slight alterations in
the initial conditions of an equation will lead to small changes in the outcomes, hence ensuring the
equation’s stability. The (U-H) idea originating from the collaborative insights of Stanislaw Ulam and
Donald Hyers, has been instrumental in bridging the gap between abstract mathematical theories and
their practical applications in physics, engineering, and beyond. By utilizing this concept, researchers
and mathematicians are able to provide rigorous proofs and frameworks that affirm the resilience and
reliability of mathematical models under minor perturbations. This is especially crucial in areas where
mathematical precision plays a fundamental role in predicting and shaping outcomes, such as in the
simulation of physical systems, optimization problems, and the analysis of control systems. The im-
plementation of the (U-H) idea to establish stability-related outcomes involves a meticulous process.
It requires the identification of the specific conditions under which a functional equation or a sys-
tem retains its intended behavior or output, despite the presence of small errors or deviations in its
initial state. This approach not only highlights the robustness of the equation or system but also un-
derscores the importance of stability in the practical application of mathematical theories. In essence,
the statement that stability-related outcomes are established by using the Ulam-Hyers (U-H) idea en-
capsulates a vital principle in the mathematical sciences. It reflects an ongoing effort to ensure that
mathematical models not only approximate reality with high fidelity but also maintain their coherence
and predictability when faced with inevitable uncertainties. This has far-reaching implications, paving
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the way for advancements in numerous scientific fields and contributing to the development of tech-
nologies that rely on the precise application of mathematical principles. Keeping this importance in
mind, we study some results for (U-H) and generalized (U-H) stability for our considered problem. A
pertinent example is given to illustrate the results.

2 Basic Results
.

Definition 2.1. [17] Let u be the absolutely continuous function on H(0, T), then the ABC derivative for
ıi ∈ (0, 1] is defined as

ABCDı1u(κ) = M(ı1)
1 − ı1

∫ κ

0
u′(s)Eıi

[
−ıi(κ − s)

1 − ıi

]
ds,

such that M(δi)(0) = M(δi)(1) = 1 satisfying.

Definition 2.2. [17] Let u be absolutely integrable function on W , then the integral with non-singular kernel
for order ıi ∈ (0, 1] is defined as

AB
0 Iıi

κu(κ) = 1 − ıi

M(ıi)
u(κ) + ıi

Γ(ıi)M(ıi)

∫ κ

0
u(s)ds.

Lemma 2.3. [17]Let h be absolutely integrable function on W , and if h → 0 at κ = 0, then
ABC
0 Dıi

κu(κ) = h(κ), 0 < ıi ≤ 1,

has a unique solution described by

u(κ) = u(0) +
1 − ıi

M(ıi)
h(κ) + ıi

M(ıi)Γ(ıi)

∫ κ

0
u(s)ds.

Let X = C(W ) × C(W ) be a Banach space with norm ∥(u, v)∥ = ∥u∥ + ∥v∥, where ∥u∥ =
maxκ∈W |u(κ)|.
Theorem 2.4. [31] Let X be a Banach space with a closed, convex and bounded subset S . Then for two
operators G1 and G2, such that

(i) G1 is contraction.

(ii) G2 is completely continuous.

So, there exist (u, v) ∈ S such that G1(u, v) + G2(u, v) = (u, v), has at least one solution.

3 Existence Theory
Here we enrich this part by our first main result.

Lemma 3.1. Let the right sides vanish at κ → 0 and if h1, h2 are absolutely integrable on W , then the solution
of 

ABCDı1u(κ) = h1(κ), 0 < ı1 ≤ 1,
ABCDı2v(κ) = h2(κ), 0 < ı2 ≤ 1,
u(0) =

∫ T
0 g1(v(s))ds,

v(0) =
∫ T

0 g2(u(s))ds,

(3.1)

is given by
u(κ) =

∫ T

0
g1(v(s))ds +

(1 − ı1)h1(κ)
M(ı1)

+
ı1

M(ı1)Γ(ı1)

∫ κ

0
(κ − s)ı1−1h1(s)ds,

v(κ) =
∫ T

0
g2(u(s))ds +

(1 − ı2)h2(κ)
M(ı2)

+
ı2

M(ı2)Γ(ı2)

∫ κ

0
(κ − s)ı2−1h2(s)ds.

(3.2)
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Proof: Let c0, d0 be constants and applying ABIı1 , ABIı2 on (3.1), we have

u(κ) = c0 +
(1 − ı1)h1(κ)

M(ı1)
+

ı1
M(ı1)Γ(ı1)

∫ κ

0
(κ − s)ı1−1h1(s)ds,

v(κ) = d0 +
(1 − ı2)h2(κ)

M(ı2)
+

ı2
M(ı2)Γ(ı2)

∫ κ

0
(κ − s)ı2−1h2(s)ds.

(3.3)

Using the boundary conditions from (3.1), we have c0 =
∫ T

0 g1(v(s))ds and d0 =
∫ T

0 g2(u(s))ds. Hence
the system (3.3) becomes

u(κ) =
∫ T

0
g1(v(s))ds +

(1 − ı1)h1(κ)
M(ı1)

+
ı1

M(ı1)Γ(ı1)

∫ κ

0
(κ − s)ı1−1h1(s)ds,

v(κ) =
∫ T

0
g2(u(s))ds +

(1 − ı2)h2(κ)
M(ı2)

+
ı2

M(ı2)Γ(ı2)

∫ κ

0
(κ − s)ı2−1h2(s)ds.

Thus, we get the desired solution.

Theorem 3.2. Inview of Lemma 3.1, the solution of (1.1) is given by
u(κ) =

∫ T

0
g1(v(s))ds +

(1 − ı1) f1(κ, u(κ), v(κ))
M(ı1)

+
ı1

M(ı1)Γ(ı1)

∫ κ

0
(κ − s)ı1−1 f1(s, u(s), v(s))ds,

v(κ) =
∫ T

0
g2(u(s))ds +

(1 − ı2) f2(κ, u(κ), v(κ))
M(ı2)

+
ı2

M(ı2)Γ(ı2)

∫ κ

0
(κ − s)ı2−1 f2(s, u(s), v(s))ds.

(3.4)

Let define two operators T1, T2 : X → X by
T1(u, v) =

∫ T

0
g1(v(s))ds +

(1 − ı1) f1(κ, u(κ), v(κ))
M(ı1)

+
ı1

M(ı1)Γ(ı1)

∫ κ

0
(κ − s)ı1−1 f1(s, u(s), v(s))ds,

T2(u, v) =
∫ T

0
g2(u(s))ds +

(1 − ı2) f2(κ, u(κ), v(κ))
M(ı2)

+
ı2

M(ı2)Γ(ı2)

∫ κ

0
(κ − s)ı2−1 f2(s, u(s), v(s))ds

(3.5)

and T = (T1, T2)(u, v).
The following hypothesis hold:

(H1) For constants Cg1 , Cg2 > 0 and u, v, ū, v̄ ∈ X one has

|g1(v)− g1(v̄)| ≤ Cg1 |v − v̄|
and |g2(u)− g2(ū)| ≤ Cg2 |u − ū|.

(H2) For constants L f1 , L f2 > 0, (u, v) (ū, v̄) ∈ X, we have

| fi(κ, u, v)− fi(κ, ū, v̄)| ≤ L fi [|u − ū|+ |v − v̄|], i = 1, 2.

(H3) For constants M f1 , M f2 > 0, Mg1 , Mg2 > 0, one has

M f1 = maxκ∈W | f1(κ, 0, 0)|, M f2 = maxκ∈W | f2(κ, 0, 0)|,
Mg1 = maxκ∈W |g1(0)| and Mg2 = maxκ∈W |g2(0)|.

For simplicity, we use

Ω = Cg1 T + Cg2 T +

(
1

M(ı1)
+

Tı1

M(ı1)Γ(ı1)

)
L f1 +

(
1

M(ı2)
+

Tı1

M(ı2)Γ(ı2)

)
L f2 . (3.6)
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Theorem 3.3. Using hypothesis (H1, H2) and if Ω < 1, as defined in (3.6), then the BVP (1.1) has a unique
solution.

Proof: Consider (u, v), (ū, v̄) ∈ X, one has from system (3.5)

∥T1(u, v)− T1(ū, v̄)∥ = max
κ∈W

|T1(u, v)(κ)− T1(ū, v̄)(κ)|

≤ max
κ∈W

[ ∫ T

0
|g1(v(s))− g1(v̄(s))|ds +

(1 − ı1)
M(ı1)

| f1(κ, u(κ), v(κ))− f1(κ, ū(κ), v̄(κ))|

+
ı1

M(ı1)Γ(ı1)

∫ κ

0
(κ − s)ı1−1| f1(s, u, v(s))− f1(s, ū(s), v̄(s))|ds

]
≤ Cg1 T||v − v̄||+ (1 − ı1)

M(ı1)
L f1 [∥u − ū∥+ ∥v − v̄∥] + Tı1

M(ı1)Γ(ı1)
L f1 [∥u − ū∥+ ∥v − v̄∥].

Hence

∥T1(u, v)− T1(ū, v̄)∥ ≤
[

Cg1 T +

(
1

M(ı1)
+

Tı1

M(ı1)Γ(ı1)

)
L f1

]
[∥u − ū∥+ ∥v − v̄∥]. (3.7)

In the same way, we also deduce that

∥T2(u, v)− T2(ū, v̄)| ≤
[

Cg2 Tı1 +

(
1

M(ı2)
+

Tı2

M(ı2)Γ(ı2)

)
L f2

]
[∥u − ū∥+ ∥v − v̄∥]. (3.8)

From equation (3.7) and (3.8), one has

∥T(u, v)− T(ū, v̄)∥ ≤ Ω∥(u, v)− (ū, v̄)∥,

where Ω is defined in (3.6). Thus, by Banach contraction theorem, BVP (1.1) has a unique solution.

Theorem 3.4. Under the hypothesis (H1 − H3) and if

L f1

M(ı1)
+

L f2

M(ı2)
< 1,

then the BVP (1.1) has at least one solution.

Proof: Let us define G1 = (G11, G12) as

G11u(κ) =
(1 − ı1)
M(ı1)

f1(κ, u(κ), v(κ)),

G12v(κ) =
(1 − ı2)
M(ı2)

f2(κ, u(κ), v(κ)),

then inview of (H1, H2), one see that for (u, v), (ū, v̄) ∈ X,

∥G11(u, v)− G11(ū, v)∥ ≤
L f1

M(ı1)
∥(u, v)− (ū, v̄)∥ (3.9)

and

∥G12(u, v)− G12(ū, v)∥ ≤
L f2

M(ı1)
∥(u, v)− (ū, v̄)∥ (3.10)
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From equations (3.9) and (3.10), one has

∥G1(u, v)− G1(ū, v̄)∥ ≤
[

L f1

M(ı1)
+

L f1

M(ı2)

]
∥(u, v)− (ū, v̄)∥.

Thus G1 is a contraction. Now let S = {(u, v) ∈ X : ∥(u, v)∥ ≤ ρ} and define G2 : S → S by
G2 = (G21, G22), such that

G21(u, v)(κ) =
∫ T

0
G1(v(s))ds +

ı1
M(ı1)Γ(ı1)

∫ κ

0
(κ − s)ı1−1 f1(s, u(s), v(s))ds,

G22(u, v)(κ) =
∫ T

0
g2(u(s))ds +

ı2
M(ı2)Γ(ı2)

∫ κ

0
(κ − s)ı2−1 f2(s, u(s), v(s))ds.

Now for any (u, v) ∈ S , one has

∥G21(u, v)∥ ≤ max
t∈W

[ ∫ T

0
|g1(v(s))|ds +

ı1
M(ı1)Γ(ı1)

∫ κ

0
(κ − s)ı1−1| f1(s, u(s), v(s))|ds

]
≤ max

t∈W

[ ∫ T

0
|g1(v(s))− g1(0)|+ |g1(0)|ds

+
ı1

M(ı1)Γ(ı1)

∫ κ

0
(κ − s)ı1−1| f1(s, u(s), v(s))− f1(s, 0, 0)|+ | f1(s, 0, 0)|ds

]
≤ (Cg1 ρ + Mg1)T +

Tı1

M(ı1)Γ(ı1)
[L f1 ρ + M f1 ] ≤

ρ

2
.

Hence
∥G21(u, v)∥ ≤ ρ

2
. (3.11)

In the same way, we have

∥G22(u, v)∥ ≤ ρ

2
. (3.12)

From equations (3.11) and (3.12), one has

ρ ≥ max
{ Mg1 T +

Tı1 M f1
M(ı1)Γ(ı1)

1
2 − Cg1 T − Tı1 L f1

M(ı1)Γ(ı1)

,
Mg2 T +

Tı2 M f2
M(ı2)Γ(ı2)

1
2 − Cg2 T − Tı2 L f2

M(ı1)Γ(ı1)

}
.

Hence from (3.11) and (3.12), one has
∥G2(u, v)∥ ≤ ρ.

Thus G2 is bounded. Also g1, g2, f1, f2 are continuous, so G2 is continuous. Now to show equi-
continuity, let κ1 < κ2 ∈ W , then

|G21(u, v)(κ2)− G21(u, v)(κ1)| ≤ ı1
M(ı1)Γ(ı1)

[ ∫ κ1

0
[(κ1 − s)ı1−1 − (κ2 − s)ı1−1]| f1(s, u(s), v(s))|ds

+
∫ κ2

κ1

(κ2 − s)ı1−1| f1(s, u(s), v(s))|ds
]

≤ 1
M(ı1)Γ(ı1)

[
(κı1

1 −κı1
2 + (κ2 −κ1)

ı1)(L f1 ρ + M f1)

+ (κ2 −κ1)
ı1(L f1 ρ + M f1)

]
,
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as right side tends to zero at κ1 → κ2, so

|G21u(κ2)− G21u(κ1)| → 0 as κ1 → κ2.

In the same way, one has
|G22u(κ2)− G22u(κ1)| → 0 as κ1 → κ2.

Therefore,
|G2u(κ2)− G2u(κ1)| → 0 as κ1 → κ2.

As G2 is bounded and continuous, therefore G2 is uniformly continuous. So, G2 = (G21, G22) is also
completely continuous. Hence using Theorem 2.4, the BVP (1.1) has at least one solution.

4 U-H Stability
Since in operator form the proposed system solution in Theorem 3.2 is written as{

T1(u, v)(κ) = (u, v),
T2(u, v) = (u, v),

(4.1)

Let for any ϵ > 0, we have ϕ independents of u, v such that ϕ : W →R, such that

|ϕ(κ)| ≤ ϵ, κ ∈ W .

In addition, it should be noted that ϕ → 0 as κ → 0. Then from Theorem 3.2 and in view of (4.1), the
solution of 

ABCDı1u(κ) = f1(κ, u(κ), v(κ)) + ϕ(κ),
ABCDı1v(κ) = f2(κ, u(κ), v(κ)) + ϕ(κ),

u(0) =
∫ T

0
g1(v(s))ds, v(0) =

∫ T

0
g2(u(s))ds,

(4.2)

is given by

u(κ) =
∫ T

0
g1(v(s))ds +

1 − ı1
M(ı1)

f1(κ, u(κ), v(κ)) + ı1
M(ı1)Γ(ı1)

∫ κ

0
(κ − s)ı1−1 f1(s, u(s), v(s))ds

+
1 − ı1
M(ı1)

ϕ(κ) + ı1
M(ı1)Γ(ı1)

∫ κ

0
(κ − s)ı1−1ϕ(s)ds,

v(κ) =
∫ T

0
g2(u(s))ds +

1 − ı2
M(ı2)

f2(κ, u(κ), u(κ)) + ı2
M(ı2)Γ(ı2)

∫ κ

0
(κ − s)ı2−1 f2(s, u(s), v(s))ds

+
1 − ı2
M(ı2)

ϕ(κ) + ı2
M(ı2)Γ(ı2)

∫ κ

0
(κ − s)ı2−1ϕ(s)ds.

Further, we have∣∣∣∣v(κ)−( ∫ T

0
g1(v(s))ds +

1 − ı1
M(ı1)

f1(κ, u(κ)v(κ)) + ı1
M(ı1)Γ(ı1)

∫ κ

0
(κ − s)ı1−1 f1(s, u(s)v(s))ds

)∣∣∣∣
≤

(
1

M(ı1)
+

Tı1

M(ı1)Γ(ı1)

)
ϵ := Aϵ,

(4.3)∣∣∣∣v(κ)−( ∫ T

0
g2(u(s))ds +

1 − ı2
M(ı2)

f2(κ, u(κ), u(κ)) + ı2
M(ı2)Γ(ı2)

∫ κ

0
(κ − s)ı2−1 f2(s, u(s), v(s))ds

)∣∣∣∣
≤

(
1

M(ı2)
+

Tı2

M(ı2)Γ(ı2)

)
ϵ := Bϵ.

(4.4)
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Theorem 4.1. In view of (4.3) and (4.4) the solution of BVP (1.1) is U-H stable if the condition
︷︸︸︷

∆ < 1,

where
︷︸︸︷

∆ = ∆1 + ∆2 + Cg1 T∆2 + Cg2 T∆1 + Cg1 Cg2 T2 such that

∆1 =
L f1 Tı1

M(ı1)Γ(ı1)
+

L f1

M(ı1)
, (4.5)

and

∆2 =
L f2 Tı2

M(ı2)Γ(ı2)
+

L f2

M(ı2)
. (4.6)

Proof: Let (u, v) ∈ X be any solution and (ū, v̄) ∈ X be a unique solution, then

|u − ū| =
∣∣∣∣v(κ)−( ∫ T

0
g1(v̄(s))ds +

1 − ı1
M(ı1)

f1(κ, ū(κ), v̄(κ)) + ı1
M(ı1)Γ(ı1)

∫ κ

0
(κ − s)ı1−1 f1(s, ū(s)v̄(s))ds

)∣∣∣∣
≤

∣∣∣∣u(κ)−( ∫ T

0
g1(v̄(s))ds +

1 − ı1
M(ı1)

f1(κ, ū(κ)v̄(κ)) + ı1
M(ı1)Γ(ı1)

∫ κ

0
(κ − s)ı1−1 f1(s, ū(s), v̄(s))ds

)∣∣∣∣
+

∫ T

0
|g1(v(s))− g1(v̄(s))|ds +

1 − ı1
M(ı1)

∣∣∣∣ f1(κ, u(κ), v(κ))− f1(κ, ū(κ), v̄(κ))
∣∣∣∣

+
ı1

M(ı1)Γ(ı1)

∫ κ

0
(κ − s)ı1−1

∣∣∣∣ f1(s, u(s)v(s))− f1(s, ū(s), v̄(s))
∣∣∣∣ds

≤ Aϵ + Cg1 T∥v − v̄∥+
[

L f1

M(ı1)
+

L f1 Tı1

M(ı1)Γ(ı1)

]
∥(u, v)− (ū, v̄)∥.

(4.7)

After some further simplification of (4.7), and using (4.5), we have

∥u − ū∥ ≤ Aϵ + ∆1∥u − ū∥+ (Cg1 T + ∆1)∥v − v̄∥. (4.8)

In the same way, by using (4.6), one can also get

∥v − v̄∥ ≤ Bϵ + (Cg2 T + ∆2)∥u − ū∥+ ∆2∥v − v̄∥. (4.9)

Then, from (4.8), and (4.9), one has

(1 − ∆1)∥u − ū∥ − (Cg1 T + ∆1)∥v − v̄∥ ≤ Aϵ

− (Cg2 T + ∆1)∥u − ū∥+ (1 − ∆2)∥v − v̄∥ ≤ Bϵ,
(4.10)

which can be expressed as[
(1 − ∆1) −(Cg1 T + ∆1)

−(Cg2 T + ∆2) (1 − ∆2)

] [
∥u − ū∥
∥v − v̄∥

]
≤

[
A
B

]
ϵ.

On solving the above inequity, we have by using

∥u − ū∥ ≤
(

A(1 − ∆2) + B(Cg1 T + ∆1)

1 −
︷︸︸︷

∆

)
ϵ

and

∥v − v̄∥ ≤
(

B(1 − ∆1) + A(Cg2 T + ∆2)

1 −
︷︸︸︷

∆

)
ϵ
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which further yields that by using

max
{

A(1 − ∆2) + B(Cg1 T + ∆1), B(1 − ∆1) + A(Cg2 T + ∆2)

}
= Θ∆1,∆2,T,Cg1 ,Cg2

,

∥(u, v)− (ū, v̄)∥ ≤
Θ∆1,∆2,T,Cg1 ,Cg2

1 −
︷︸︸︷

∆
ϵ. (4.11)

Thus the solution is U-H stable.
In addition if there exists a non-decreasing function ψ : [0, T] → R, with ψ(ϵ) = ϵ and ψ(0) = 0.

Then from (4.11), we have

∥(u, v)− (ū, v̄)∥ ≤
Θ∆1,∆2,T,Cg1 ,Cg2

1 −
︷︸︸︷

∆
ψ(ϵ).

Hence the solution is generalized U-H stable.

5 Application
Here, we present an example as illustration of our main results.

Example 5.1. Consider
ABCD

1
2 u(κ) = exp(−κ)+|u(κ)|+sin |v(κ)|

κ3+80 ,
ABCD

1
2 v(κ) = exp(−4π)+| sin u(κ)|+|v(κ)|

κ3+80 ,

u(0) =
∫ 1

0
exp(−|v(s)|)

s2+100 ds, v(0) =
∫ 1

0
exp−|u(s)|

s4+100 ds.

(5.1)

Then

f1(κ, u(κ), v(κ)) = exp(−κ) + |u(κ)|+ sin |v(κ)|
κ3 + 80

, f2(κ, u(κ), v(κ)) = exp(−4π) + | sin u(κ)|+ |v(κ)|
κ3 + 80

,

g1(v(κ)) =
exp(−|v(κ)|)

κ2 + 100
, g2(u(κ)) =

exp(−|u(κ)|)
κ2 + 100

.

On calculation, we have L fi = 1
80 , M fi = 0, for i = 1, 2, Cgi = 1

100 , Mgi = 1, for i = 1, 2. Also using
M( 1

2 ) = 1, T = 1, then one can compute that

Ω = Cg1 T + Cg2 T +

(
1

M(ı1)
+

Tı1

M(ı1)Γ(ı1)

)
L f1 +

(
1

M(ı2)
+

Tı1

M(ı2)Γ(ı2)

)
L f2

=
1

100
.1 +

1
100

.1 + 2
(

1 +
1

Γ( 1
2 )

)
1

80
= 0.60918958 < 1.

Hence inview of Theorem 3.3, the given problem has a unique solution. Moreover, the conditions of Theorem 3.4
are also satisfied and we see that

L f1

M(ı1)
+

L f2

M(ı2)
=

2
80

< 1.

Hence the given problem has at least one solution. To see condition of U-H stability, we see that ∆i =
1+

√
π

80
√

π
, i =

1, 2, and ︷︸︸︷
∆ = ∆1 + ∆2 + Cg1 T∆2 + Cg2 T∆1 + Cg1 Cg2 T2

=
2(1 +

√
π)

80
√

π
+

2
100

(1 +
√

π)

80
√

π
+

1
10000

< 1,

Therefore, inview of Theorem 4.1, the solution is U-H stable.

24



Journal of Mathematical Techniques in Modeling Vol.1, Issue.2, 2024
6 Conclusion

This work has been committed to discuss the existence theory of coupled BVP with coupled inte-
gral boundary conditions. Additionally, we have investigated the mentioned problems by using the
ABC fractional order differential operator. On using the Krasnoselskii and Banach fixed point theo-
rems, we have established sufficient conditions for the existence and uniqueness of the solution. Also,
using the tools of numerical functional analysis, a result related to U-H stability has also been derived.
By a pertinent example, we have testified the results. For future work, we recommend this work can
be extended to the study of numerical analysis. Also another approaches for qualitative study can be
applied to the consider problem, such as topological degree theory and Measure of non-compactness.
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fractional derivative and its distributional settings.” Fractional Calculus and Applied Analysis 21, no.
1 (2018): 29-44. https://doi.org/10.1515/fca-2018-0003

[21] Abdeljawad, Thabet. ”Fractional operators with exponential kernels and a Lyapunov type in-
equality.” Advances in Difference Equations 2017, (2017): 1-11. https://doi.org/10.1186/s13662-017-
1285-0

[22] Al-Refai, Mohammed, and Kamal Pal. ”New aspects of Caputo–Fabrizio fractional derivative.”
Prog. Fract. Differ. Appl 5, no. 2 (2019): 157-166. https://doi.org/10.18576/pfda/050206
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